Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2013 Jun 4;18(3):328–339. doi: 10.2478/s11658-013-0092-1

The protective effect of crocin on the amyloid fibril formation of aβ42 peptide in vitro

Arezou Ghahghaei 192,, S Zahra Bathaie 292, Hoda Kheirkhah 192, Elmira Bahraminejad 192
PMCID: PMC6275581  PMID: 23737042

Abstract

Aβ is the main constituent of the amyloid plaque found in the brains of patients with Alzheimer’s disease. There are two common isoforms of Aβ: the more common form, Aβ40, and the less common but more amyloidogenic form, Aβ42. Crocin is a carotenoid from the stigma of the saffron flower and it has many medicinal properties, including antioxidant effects. In this study, we examined the potential of crocin as a drug candidate against Aβ42 amyloid formation. The thioflavin T-binding assay and electron microscopy were used to examine the effects of crocin on the extension and disruption of Aβ42 amyloids. To further investigate the relationship between crocin and Aβ42 structure, we analyzed peptide conformation using the ANS-binding assay and circular dichroism (CD) spectroscopy. An increase in the thioflavin T fluorescence intensity upon incubation revealed amyloid formation in Aβ42. It was found that crocin has the ability to prevent amyloid formation by decreasing the fluorescence intensity. Electron microscopy data also indicated that crocin decreased the amyloid fibril content of Aβ. The ANS-binding assay showed that crocin decreased the hydrophobic area in incubated Aβ42. CD spectroscopy results also showed that the peptide undergoes a structural change to α-helical and β-turn. Our study shows that the anti-amyloidogenic effect of crocin may be exerted not only by the inhibition of Aβ amyloid formation but also by the disruption of amyloid aggregates. Therefore, crocin could be essential in the search for therapies inhibiting aggregation or disrupting aggregation.

Key words: Alzheimer’s disease, Neurotic plaques, Aβ42, Crocin, Amyloid, Neurofibrillary, Aggregation, Oligomerization, Protofibrils, Cytotoxic

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Abbreviations used

A

amyloid beta peptide

AD

Alzheimer’s disease

ANS

1-anilino-8-naphthalene sulfonic acid

APP

amyloid precursor protein

CD

circular dichroism

TEM

transmission electron microscopy

ThT

thioflavin T

References

  • 1.Burns A, Byrne EJ, Maurer K. Alzheimer’s disease. Lancet. 1998;360:163–165. doi: 10.1016/S0140-6736(02)09420-5. [DOI] [PubMed] [Google Scholar]
  • 2.Brookmeyer R, Gray S, Kawas C. Projections of Alzheimer’s disease in the United States and the public health impact of delaying disease onset. Am. J. Public Health. 1998;88:1337–1342. doi: 10.2105/ajph.88.9.1337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Khalil Z, Poliviou H, Maynard CJ, Beyreuther K, Masters CL, Li QX. Mechanisms of peripheral microvascular dysfunction in transgenic mice overexpressing the Alzheimer’s disease amyloid Abeta protein. J. Alzheimer’s Dis. 2002;4:467–478. doi: 10.3233/jad-2002-4603. [DOI] [PubMed] [Google Scholar]
  • 4.Waldemar G, Dubois B, Emre M, Georges J, McKeith IG, Rossor M, Scheltens P, Tariska P, Winblad B. Recommendations for the diagnosis and management of Alzheimer’s disease and other disorders associated with dementia: EFNS guideline. Eur. J. Neurol. 2007;14:e1–e26. doi: 10.1111/j.1468-1331.2006.01605.x. [DOI] [PubMed] [Google Scholar]
  • 5.Veeranna, Kaji T, Boland B, Odrljin T, Mohan P, Basavarajappa BS, Peterhoff C, Cataldo A, Rudnicki A, Amin N, Li BS, Pant HC, Hungund BL, Arancio O, Nixon RA. Calpain mediates calcium-induced activation of the Erk1,2 MAPK pathway and cytoskeletal phosphorylation in neurons: relevance to Alzheimer’s disease. Am. J. Pathol. 2004;165:795–805. doi: 10.1016/S0002-9440(10)63342-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Thomas P, Fenech M. A review of genome mutation and Alzheimer’s disease. Mutagenesis. 2007;22:15–33. doi: 10.1093/mutage/gel055. [DOI] [PubMed] [Google Scholar]
  • 7.Bajić PV, Su B, Lee H, Kudo W, Siedlak LS, Živković L, Spremo-Potparević B, Djelic N, Milicevic Z, Singh KA, Fahmy ML, Wang X, Smith AM, Zhu X. Mislocalization of CDK11/PITSLRE, a regulator of the G2/M phase of the cell cycle, in Alzheimer’s disease. Cell. Mol. Biol. Lett. 2011;16:350–372. doi: 10.2478/s11658-011-0011-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Koo EH. The beta-amyloid precursor protein (APP) and Alzheimer’s disease: does the tail wag the dog? Traffic. 2002;3:763–770. doi: 10.1034/j.1600-0854.2002.31101.x. [DOI] [PubMed] [Google Scholar]
  • 9.Wirths O, Multhaup G, Bayer TA. A modified beta-amyloid hypothesis: intraneuronal accumulation of the beta-amyloid peptide-the first step of a fatal cascade. J. Neurochem. 2004;91:513–520. doi: 10.1111/j.1471-4159.2004.02737.x. [DOI] [PubMed] [Google Scholar]
  • 10.Howlett DR, Simmons DL, Dingwall C, Christie G. In search of an enzyme: the beta-secretase of Alzheimer’s disease is an aspartic proteinase. Trends Neurosci. 2000;23:565–570. doi: 10.1016/s0166-2236(00)01647-7. [DOI] [PubMed] [Google Scholar]
  • 11.Yatin SM, Varadarajan S, Link CD, Butterfield DA. In vitro and in vivo oxidative stress associated with Alzheimer’s amyloid beta-peptide (1–42) Neurobiol. Aging. 1999;20:325–330. doi: 10.1016/s0197-4580(99)00056-1. [DOI] [PubMed] [Google Scholar]
  • 12.Butterfield DA. Amyloid beta-peptide (1–42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer’s disease brain. Free Radic. Res. 2002;36:1307–1313. doi: 10.1080/1071576021000049890. [DOI] [PubMed] [Google Scholar]
  • 13.Gandy S, Simon AJ, Steele JW, Lublin AL, Lah JJ, Walker LC, Levey AI, Krafft GA, Levy EF, Checler F, Glabe C, Bilker W, Abel T, Schmeidler J, Ehrlich ME. Days to criterion as an indicator of toxicity associated with human Alzheimer amyloid-beta oligomers. Ann. Neurol. 2012;68:220–230. doi: 10.1002/ana.22052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Roher AE, Chaney MO, Kuo YM, Webster SD, Stine WB, Haverkamp LJ, Woods ASC, Tuohy JM, Krafft GA, Bonnell BS, Emmerling MR. Morphology and toxicity of Abeta-(1–42) dimer derived from neuritic and vascular amyloid deposits of Alzheimer’s disease. J. Biol. Chem. 1996;271:20631–20635. doi: 10.1074/jbc.271.34.20631. [DOI] [PubMed] [Google Scholar]
  • 15.Kirkitadze MD, Kowalska A. Molecular mechanisms initiating amyloid beta-fibril formation in Alzheimer’s disease. Acta Biochim. Pol. 2005;52:417–423. [PubMed] [Google Scholar]
  • 16.Sallowaya S, Mintzerb J, Weinerc MF, Cummings JL. Diseasemodifying therapies in Alzheimer’s disease. Alzheimer’s Dement. 2008;4:65–79. doi: 10.1016/j.jalz.2007.10.001. [DOI] [PubMed] [Google Scholar]
  • 17.Bathaie SZ, Mousavi SZ. New applications and mechanisms of action of saffron and its important ingredients. Crit. Rev. Food. Sci. Nutr. 2010;50:761–786. doi: 10.1080/10408390902773003. [DOI] [PubMed] [Google Scholar]
  • 18.Soeda S, Ochiai T, Shimeno H, Saito H, Abe K, Tanaka H, Shoyama Y. Pharmacological activities of crocin in saffron. J. Nat. Med. 2007;61:102–111. [Google Scholar]
  • 19.Yin YI, Bassit B, Zhu L, Yang X, Wang C, Li YM. γ-secretase substrate concentration modulates the Aβ42/Aβ40 ratio: Implications for Alzheimer’s disease. J. Biol. Chem. 2007;282:23639–23644. doi: 10.1074/jbc.M704601200. [DOI] [PubMed] [Google Scholar]
  • 20.Bolhasani Sanjabi A, Bathaie SZ, Moosavi-Movahedi AA, Ghaffari M. Separation and purification of some components of Iranian saffron. Asia J. Chem. 2005;17:725–729. [Google Scholar]
  • 21.Pandreou MA, Kanakis CD, Polissiou MG, Efthimiopoulos S, Cordopatis P, Margarity M, Lamari FN. Inhibitory activity on amyloid-beta aggregation and antioxidant properties of crocus sativus stigmas extract and its crocin constituents. J. Agric. Food Chem. 2006;54:8762–8768. doi: 10.1021/jf061932a. [DOI] [PubMed] [Google Scholar]
  • 22.Khurana R, Coleman C, Ionescu-Zanetti C, Carter SA, Krishna V, Grover RK, Roy R, Singh S. Mechanism of thioflavin T binding to amyloid fibrils. J. Struct. Biol. 2005;151:229–238. doi: 10.1016/j.jsb.2005.06.006. [DOI] [PubMed] [Google Scholar]
  • 23.Kirk WR, Kurian E, Prendergast FG. Characterization of the sources of protein-ligand affinity: 1-sulfonato-8-(1’)anilinonaphthalene binding to intestinal fatty acid binding protein. Biophys. J. 1996;70:69–83. doi: 10.1016/S0006-3495(96)79592-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Matulis D, Baumann CG, Bloomfield VA, Lovrien RE. 1-anilino-8-naphthalene sulfonate as a protein conformational tightening agent. Biopolymers. 1999;49:451–458. doi: 10.1002/(SICI)1097-0282(199905)49:6<451::AID-BIP3>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
  • 25.Matulis D, Lovrien R. 1-Anilino-8-naphthalene sulfonate anion-protein binding depends primarily on ion pair formation. Biophys. J. 1998;74:422–429. doi: 10.1016/S0006-3495(98)77799-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Kelly SM, Jess TJ, Price NC. How to study proteins by circular dichroism. Biochim. Biophys. Acta. 2005;1751:119–139. doi: 10.1016/j.bbapap.2005.06.005. [DOI] [PubMed] [Google Scholar]
  • 27.Sureshbabu N, Kirubagaran R, Jayakumar R. Surfactant-induced conformational transition of amyloid β-peptide. Eur. Biophys. J. 2009;38:355–367. doi: 10.1007/s00249-008-0379-8. [DOI] [PubMed] [Google Scholar]
  • 28.Hasegawa K, Ono K, Yamada M, Naiki H. Kinetic modeling and determination of reaction constants of Alzheimer’s beta-amyloid fibril extension and dissociation using surface plasmon resonance. Biochemistry. 2002;41:13489–13498. doi: 10.1021/bi020369w. [DOI] [PubMed] [Google Scholar]
  • 29.Naiki H, Gejyo F. Kinetic analysis of amyloid fibril formation. Methods Enzymol. 1999;309:305–318. doi: 10.1016/s0076-6879(99)09022-9. [DOI] [PubMed] [Google Scholar]
  • 30.Sunde M, Serpell LC, Bartlam M, Fraser PE, Pepys MB, Blake CC. Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J. Mol. Biol. 1997;273:729–739. doi: 10.1006/jmbi.1997.1348. [DOI] [PubMed] [Google Scholar]
  • 31.Wetzel R. Ideas of order for amyloid fibril structure. Structure. 2002;10:1031–1036. doi: 10.1016/s0969-2126(02)00809-2. [DOI] [PubMed] [Google Scholar]
  • 32.Dobson CM. Protein misfolding, evolution and disease. Trends Biochem. Sci. 1999;24:329–332. doi: 10.1016/s0968-0004(99)01445-0. [DOI] [PubMed] [Google Scholar]
  • 33.Dobson CM. The structural basis of protein folding and its links with human disease. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2001;356:133–145. doi: 10.1098/rstb.2000.0758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Younkin SG. Evidence that Aβ42 is the real culprit in Alzheimer’s disease. Ann. Neurol. 1995;37:287–288. doi: 10.1002/ana.410370303. [DOI] [PubMed] [Google Scholar]
  • 35.Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, Glabe CG. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science. 2003;300:486–489. doi: 10.1126/science.1079469. [DOI] [PubMed] [Google Scholar]
  • 36.Ban T, Hamada D, Hasegawa K, Naiki H, Goto Y. Direct observation of amyloid fibril growth monitored by thioflavin T fluorescence. J. Biol. Chem. 2003;278:16462–16465. doi: 10.1074/jbc.C300049200. [DOI] [PubMed] [Google Scholar]
  • 37.Bourhim M, Kruzel M, Srikrishnan T, Nicotera T. Linear quantitation of Aβ aggregation using Thioflavin T: Reduction in fibril formation by colostrinin. J. Neurosci. Methods. 2007;160:264–268. doi: 10.1016/j.jneumeth.2006.09.013. [DOI] [PubMed] [Google Scholar]
  • 38.Nybo M, Svehag SE, Holm Nielsen E. An ultrastructural study of amyloid intermediates in A beta1-42 fibrillogenesis. Scand. J. Immunol. 1999;49:219–223. doi: 10.1046/j.1365-3083.1999.00526.x. [DOI] [PubMed] [Google Scholar]
  • 39.Caesar I, Jonson M, Nilsson KP, Thor S, Hammarström P. Curcumin promotes A-beta fibrillation and reduces neurotoxicity in transgenic drosophila. PLoS One. 2012;7:e31424. doi: 10.1371/journal.pone.0031424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Kanski J, Aksenova M, Butterfield DA. The hydrophobic environment of Met35 of Alzheimer’s Abeta(1–42) is important for the neurotoxic and oxidative properties of the peptide. Neurotox. Res. 2002;4:219–223. doi: 10.1080/10298420290023945. [DOI] [PubMed] [Google Scholar]
  • 41.Cardamone M, Puri NK. Spectrofluorimetric assessment of the surface hydrophobicity of proteins. Biochem. J. 1993;282:589–593. doi: 10.1042/bj2820589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Schein CH. Solubility as a function of protein structure and solvent components. Nat. Biotech. 1990;8:308–317. doi: 10.1038/nbt0490-308. [DOI] [PubMed] [Google Scholar]
  • 43.Serpell LC. Alzheimer’s amyloid fibrils: structure and assembly. Biochim. Biophys. Acta. 2000;vn]1502:16–30. doi: 10.1016/s0925-4439(00)00029-6. [DOI] [PubMed] [Google Scholar]
  • 44.Crescenzi O, Tomaselli S, Guerrini R, Salvadori S, D’Ursi AM, Temussi PA, Picone D. Solution structure of the Alzheimer amyloid beta-peptide (1–42) in an apolar microenvironment. Similarity with a virus fusion domain. Eur. J. Biochem. 2002;269:5642–5648. doi: 10.1046/j.1432-1033.2002.03271.x. [DOI] [PubMed] [Google Scholar]
  • 45.López De La Paz M, Goldie K, Zurdo J, Lacroix E, Dobson CM, Hoenger A, Serrano L. De novo designed peptide-based amyloid fibrils. Proc. Natl. Acad. Sci. USA. 2002;99:16052–15057. doi: 10.1073/pnas.252340199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Mishima K, Tanaka T, Pu F, Egashira N, Iwasaki K, Hidaka R, Matsunaga K, Takata J, Karube Y, Fujiwara M. Vitamin E isoforms alpha-tocotrienol and gamma-tocopherol prevent cerebral infarction in mice. Neurosci. Lett. 2003;337:56–60. doi: 10.1016/s0304-3940(02)01293-4. [DOI] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES