Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2008 Feb 29;13(3):353–365. doi: 10.2478/s11658-008-0008-7

The ubiquitin-proteasome system: A novel target for anticancer and anti-inflammatory drug research

Halina Ostrowska 1,
PMCID: PMC6275582  PMID: 18311545

Abstract

The ubiquitin-proteasome system is responsible for the degradation of most intracellular proteins, including those that control cell cycle progression, apoptosis, signal transduction and the NF-κB transcriptional pathway. Aberrations in the ubiquitin-proteasome system underlie the pathogenesis of many human diseases, so both the ubiquitin-conjugating system and the 20S proteasome are important targets for drug discovery. This article presents a few of the most important examples of the small molecule inhibitors and modulators targeting the ubiquitin-proteasome system, their mode of action, and their potential therapeutic relevance in the treatment of cancer and inflammatory-related diseases.

Keywords: E3 ubiquitin ligases, Proteasome, Inhibitors, Modulators, Therapeutic potential, Cancer, Stroke, Cardiovascular diseases

Full Text

The Full Text of this article is available as a PDF (419.5 KB).

Abbreviations used

AML

acute myeloid leukemia

ARF

acute renal failure

BMSCs

bone marrow stromal cells

βTrPC

β-transducin repeat containing protein

CDK

cyclindependent kinase

ChT-L

chymotrypsin-like

C-L

caspase-like

CLL

chronic lymphocytic leukemia

DHT

dihydroxytestosterone

DOCA

deoxycortycosterone

DUB

deubiquitinating enzyme

E1

ubiquitin-activating enzyme

E2

ubiquitin-conjugating enzyme

E3

ubiquitin-protein ligase

ET-1

endothelin-1

Hdm2

human counterpart of Mdm2

HIF-1

hypoxia inducible factor

IKK

IκB kinase

IL-1

interleukin

INF-γ

interferon gamma

LMP

low-molecular-mass polypeptide

Mdm2

murine double minute 2

Met-AP-2

metionine aminopeptidase-2

MHC

major histocompatibility complex

MM

multiple myeloma

NF-κB

nuclear factor-kappaB

pIκBα

phosphorylated inhibitor-κβ

Protacs

proteolytic targeting chimeric molecules

pVHL

phosphorylated von Hippel-Lindau tumor suppressor

RITA

reactivation of p53 and induction of tumor cell apoptosis

SCF

complex formed by Skp1, cullin and F-box protein

siRNA

small interfering RNA

SKP2

S-phase kinase associated protein 2

SMPI

small molecule proteolysis inducers

T-L

trypsin-like

TNF

tumor necrosis factor

UPS

ubiquitin-proteasome system

VCAM

various leukocyte adhesion molecules

VEGF

vascular endothelial growth factor

Footnotes

Paper authored by participants of the international conference: XXXIV Winter School of the Faculty of Biochemistry, Biophysics and Biotechnology of Jagiellonian University, Zakopane, March 7–11, 2007, “The Cell and Its Environment”. Publication cost was partially covered by the organisers of this meeting.

References

  • 1.Glickman M.H., Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol. Rev. 2001;82:373–428. doi: 10.1152/physrev.00027.2001. [DOI] [PubMed] [Google Scholar]
  • 2.Ciechanover A., Schwartz A.L. The ubiquitin system: pathogenesis of human diseases and drug targeting. Biochim. Biophys. Acta. 2004;1695:3–7. doi: 10.1016/j.bbamcr.2004.09.018. [DOI] [PubMed] [Google Scholar]
  • 3.Herrmann J., Ciechanover A., Lerman L.O., Lerman A. The ubiquitinproteasome system in cardiovascular diseases-a hypothesis extended. Cardiovasc. Res. 2004;61:11–21. doi: 10.1016/j.cardiores.2003.09.033. [DOI] [PubMed] [Google Scholar]
  • 4.Wojcik C., Di Napoli M. Ubiquitin-proteasome system and proteasome inhibition: new strategies in stroke therapy. Stroke. 2004;35:1506–1518. doi: 10.1161/01.STR.0000126891.93919.4e. [DOI] [PubMed] [Google Scholar]
  • 5.Nalepa G., Rolfe M., Harper J.W. Drug discovery in the ubiquitinproteasome system. Nature. 2006;5:596–623. doi: 10.1038/nrd2056. [DOI] [PubMed] [Google Scholar]
  • 6.Burger A., Seth A.K. The ubiquitin-mediated protein degradation pathway in cancer: therapeutic implications. Eur. J. Cancer. 2004;40:2217–2229. doi: 10.1016/j.ejca.2004.07.006. [DOI] [PubMed] [Google Scholar]
  • 7.Sun Y. E3 ubiquitin ligases as cancer targets and biomarkers. Neoplasia. 2006;8:645–654. doi: 10.1593/neo.06376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Kisselev A.F., Goldberg A.L. Proteasome inhibitors: from research tools to drug candidates. Chem. Biol. 2001;8:739–758. doi: 10.1016/S1074-5521(01)00056-4. [DOI] [PubMed] [Google Scholar]
  • 9.Delcros J.G., Floch M.B., Prigent C., Arlot-Bonnemains Y. Proteasome inhibitors as therapeutic agents: current and future strategies. Curr. Med. Chem. 2003;10:479–503. doi: 10.2174/0929867033368231. [DOI] [PubMed] [Google Scholar]
  • 10.Joazeiro C.A.P., Anderson K.C., Hunter T. Proteasome inhibitor drugs on the rise. Cancer Res. 2006;66:7840–7842. doi: 10.1158/0008-5472.CAN-06-2033. [DOI] [PubMed] [Google Scholar]
  • 11.Voorhees P.M., Orlowski R.Z. The proteasome and proteasome inhibitors in cancer therapy. Annu. Rev. Pharmacol. Toxicol. 2006;46:189–213. doi: 10.1146/annurev.pharmtox.46.120604.141300. [DOI] [PubMed] [Google Scholar]
  • 12.Orlowski Z. The ubiquitin proteasome pathway from bench to bedside. Hematology. 2005;1:220–225. doi: 10.1182/asheducation-2005.1.220. [DOI] [PubMed] [Google Scholar]
  • 13.Zhou P. Targeted protein degradation. Curr. Opin. Chem. Biol. 2005;9:51–55. doi: 10.1016/j.cbpa.2004.10.012. [DOI] [PubMed] [Google Scholar]
  • 14.Michael D., Oren M. The p53-Mdm2 module and the ubiquitin system. Semin. Cancer Biol. 2003;13:49–58. doi: 10.1016/S1044-579X(02)00099-8. [DOI] [PubMed] [Google Scholar]
  • 15.Vassilev L.T., Vu B.T., Graves B., Carvajal D., Podlaski F., Filipovic Z., Kong N., Kammlott U., Lukacs C., Klein C., Fotouhi N., Liu E.A. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science. 2004;303:844–848. doi: 10.1126/science.1092472. [DOI] [PubMed] [Google Scholar]
  • 16.Issaeva N., Bozko P., Enge M., Protopopowa M., Verhoef L.G., Masucci M., Pramanik A., Selivanova G. Small molecule RITA binds to p53, blocks p53-HDM2 interaction and activates p53 function in tumors. Nature Med. 2004;10:1321–1328. doi: 10.1038/nm1146. [DOI] [PubMed] [Google Scholar]
  • 17.Maerken T.V., Speleman F., Vermuelen J., Lambertz I., Clercq S., Smet E., Yigit N., Coppens V., Philippe J., Paepe A., Marine J., Vandesompele J. Small-molecule MDM2 antagonists as a new therapy concept for neuroblastoma. Cancer Res. 2006;66:9646–9655. doi: 10.1158/0008-5472.CAN-06-0792. [DOI] [PubMed] [Google Scholar]
  • 18.Gstaiger M., Jordan R., Lim M., Catzavelos C., Mestan J., Slingerland J., Krek W. Skp2 is oncogenic and overexpressed in human cancers. Proc. Natl. Acad. Sci. (USA) 2001;24:5043–5048. doi: 10.1073/pnas.081474898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Baldwin A.S. The transcription factor NF-κB and human diseases. J. Clin. Invest. 2001;107:3–6. doi: 10.1172/JCI11891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Karin M. Nuclear factor-κB in cancer development and progression. Nature. 2006;44:431–436. doi: 10.1038/nature04870. [DOI] [PubMed] [Google Scholar]
  • 21.Yamamoto Y., Gaynor R.B. Therapeutic poteκtial of inhibition of the NF-κB pathway in the treatment of inflammation and cancer. J. Clin. Invest. 2001;107:135–142. doi: 10.1172/JCI11914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Yaron A., Gonen H., Alkalay I., Hatzubai A., Jung S., Beyth S., Mercurio F., Manning A.M., Ciechanover A., Ben-Neriah Y. Inhibition of NF-κB cellular function via specific targeting of the IκB-ubiquitin ligase. EMBO J. 1997;16:6486–6494. doi: 10.1093/emboj/16.21.6486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Swinney D.C., Xu Y.Z., Scarafia L.E., Lee I., Mak A.Y., Gan Q.F., Ramesha C.S., Mulkins M.A., Dunn J., So O.Y., Biegel T., Dinh M., Volkel P., Barnett J., Dalrymple S.A., Lee S., Huber M. A small molecule ubiquitination inhibitor blocks NF-κB-dependent cytokine expression in cells and rats. J. Biol. Chem. 2002;277:2357–23581. doi: 10.1074/jbc.M200842200. [DOI] [PubMed] [Google Scholar]
  • 24.Adams J. Proteasome inhibitors as new anticancer drugs. Curr. Opin. Oncol. 2002;14:628–634. doi: 10.1097/00001622-200211000-00007. [DOI] [PubMed] [Google Scholar]
  • 25.Elliott P.J., Zollner T.M., Boehncke W.H. Proteasome inhibition: a new anti-inflammatory strategy. J. Mol. Med. 2003;81:235–245. doi: 10.1007/s00109-003-0422-2. [DOI] [PubMed] [Google Scholar]
  • 26.Orlowski M., Wilk S. Catalytic activities of the 20S proteasome, a multicatalytic proteinase complex. Arch. Biochem. Biophys. 2000;383:1–16. doi: 10.1006/abbi.2000.2036. [DOI] [PubMed] [Google Scholar]
  • 27.Groll M., Huber R. Inhibitors of eukaryotic 20S proteasome core particle: a structural approach. Biochim. Biophys. Acta. 2004;1695:33–44. doi: 10.1016/j.bbamcr.2004.09.025. [DOI] [PubMed] [Google Scholar]
  • 28.Kloetzel P.M., Ossendorp F. Proteasome and peptidase function in MHC class I-mediated antigen presentation. Curr. Opin. Immunol. 2004;16:76–81. doi: 10.1016/j.coi.2003.11.004. [DOI] [PubMed] [Google Scholar]
  • 29.Groll M., Huber R. Inhibitors of eukaryotic 20S proteasome core particle: a structural approach. Biochim. Biophys. Acta. 2004;1695:33–44. doi: 10.1016/j.bbamcr.2004.09.025. [DOI] [PubMed] [Google Scholar]
  • 30.Hideshima T., Richardson P., Chauhan D., Palombella V.J., Elliot P.J., Adams J., Anderson K.C. The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer. Res. 2001;61:3071–3076. [PubMed] [Google Scholar]
  • 31.Lee A.H., Iwakoshi N.N., Anderson K.C., Glimcher L.H. Proteasome inhibitors disrupt the unfolded protein response in myeloma cells. Proc. Natl. Acad. Sci (USA) 2003;100:9946–9951. doi: 10.1073/pnas.1334037100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Adams J., Kauffman M. Development of the proteasome inhibitor Velcade (Bortezomib) Cancer Invest. 2004;22:304–11. doi: 10.1081/CNV-120030218. [DOI] [PubMed] [Google Scholar]
  • 33.Hideshima T., Mitsiades C., Akiyama M., Hayashi T., Chauhan D., Richardson P., Schlossman R., Podar K., Munshi N.C., Mitsiades N., Anderson K.C. Molecular mechanisms mediating antimyeloma activity of proteasome inhibitor PS-341. Blood. 2003;101:1530–1534. doi: 10.1182/blood-2002-08-2543. [DOI] [PubMed] [Google Scholar]
  • 34.Mitsiades N., Mitsiades C.S., Richardson P.G., Poulaki V., Tai Y.Y., Chauhan D., Fanourakis G., Gu X., Bailey C., Joseph M., Libermann T.A., Schlossman R., Munshi N.C., Hideshima T., Anderson K.C. The proteasome inhibitor PS-341 potentates sensitivity of multiple myeloma cells to conventional chemotherapeutic agents: therapeutic applications. Blood. 2003;101:2377–2380. doi: 10.1182/blood-2002-06-1768. [DOI] [PubMed] [Google Scholar]
  • 35.Vink J., Cloos J., Kaspers G.J.L. Proteasome inhibition as novel treatment strategy in leukaemia. Brit. J. Haematol. 2006;134:253–262. doi: 10.1111/j.1365-2141.2006.06170.x. [DOI] [PubMed] [Google Scholar]
  • 36.Feling R.H., Buchanan G.O., Mincer T.J., Kauffman C.A., Jensen P.R., Fenical W. Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus salinospora. Angew. Chem. In. Ed. Engl. 2003;42:355–357. doi: 10.1002/anie.200390115. [DOI] [PubMed] [Google Scholar]
  • 37.Kuhn, D.J., Chen, Q., Voorhees, P.M., Strader, J.S., Shenk, K.D., Sun, C.M., Demo, S.D., Bennet, M.K., Leewen, F.W., Chanan-Khan, A.A. and Orlowski, R.Z. Potent activity of carfilzomib, a novel, irreversible inhibitor of the ubiquitin-proteasome pathway, against pre-clinical models of multiple myeloma. Blood (2007) prepublished online. [DOI] [PMC free article] [PubMed]
  • 38.Ho A., Bargagna-Mohan P., Wehenkel M., Mohan R., Kim K. LMP2-specific inhibitors: chemical genetic tools for proteasome biology. Chem. Biol. 2007;14:419–430. doi: 10.1016/j.chembiol.2007.03.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Chauhan D., Catley L., Li G., Podar K., Hideshima T., Velankar M., Mitsiades N., Yasui H., Letai A., Ovaa H., Berkers C., Nicholson B., Chao T., Neuteboom S.T., Richardson P., Palladino M.A., Anderson C. A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from bortezomib. Cancer Cell. 2005;8:407–419. doi: 10.1016/j.ccr.2005.10.013. [DOI] [PubMed] [Google Scholar]
  • 40.Ruiz S., Krupnik Y., Keating M., Chandra J., Palladino M., McConkey D. The proteasome inhibitor NPI-0052 is a more effective inducer of apoptosis than bortezomib in lymphocytes from patients with chronic lymphocytic leukemia. Mol. Cancer Ther. 2006;7:1836–1843. doi: 10.1158/1535-7163.MCT-06-0066. [DOI] [PubMed] [Google Scholar]
  • 41.Stapnes C., Doskeland A.P., Hatfield K., Ersvaer E., Ryningen A., Lorens J.B. The proteasome inhibitors bortezomib and PR-171 have antiproliferative and proapoptotic effects on primary human acute myeloid leukaemia cells. Brit. J. Haematol. 2007;136:814–828. doi: 10.1111/j.1365-2141.2007.06504.x. [DOI] [PubMed] [Google Scholar]
  • 42.Di Napoli M., Papa F. MLN-519: Milenium/PAION. Curr. Opin. Invest. Drugs. 2003;4:333–341. [PubMed] [Google Scholar]
  • 43.Phillips J.B., Williams A.J., Adams J., Elliott P.J., Tortella F.C. Proteasome inhibitor PS519 reduced infarction and attenuates leukocyte infiltration in a rat model of focal cerebral ischemia. Stroke. 2000;31:1686–1693. doi: 10.1161/01.str.31.7.1686. [DOI] [PubMed] [Google Scholar]
  • 44.Zhang L., Zhang Z.G., Zhang R.L., Lu M., Adams J., Elliott P.J., Chopp M. Postischemic (6-hour) treatment with recombinant human tissue plasminogen activator and proteasome inhibitor PS-519 reduces infarction in a rat model of embolic focal cerebral ischemia. Stroke. 2001;32:2926–2931. doi: 10.1161/hs1201.100207. [DOI] [PubMed] [Google Scholar]
  • 45.Berti R., Williams A.J., Velarde L.C., Moffett J.R., Elliott P.J., Adams J., Yao C., Dave J.R., Tortella F.C. Effect of the proteasome inhibitor MLN519 on the expression of inflammatory molecules following middle cerebral artery occlusion and reperfusion in the rat. Neurotox. Res. 2003;5:505–514. doi: 10.1007/BF03033160. [DOI] [PubMed] [Google Scholar]
  • 46.Williams A.J., Dave J.R., Elliot P.J., Adams J., Tortella F.C. Delayed treatment of ischemic/reperfusion brain injury: extended therapeutic window with the proteasome inhibitor MLN519. Stroke. 2004;35:1186–1191. doi: 10.1161/01.STR.0000125721.10606.dc. [DOI] [PubMed] [Google Scholar]
  • 47.Williams A.J., Dave J.R., Tortella F.C. Neuroprotection with the proteasome inhibitor MLN519 in focal ischemic brain injury: relation to nuclear factor kappa B (NF-kappaB), inflammatory gene expression, and leukocyte infiltration. Neurochem. Int. 2006;49:106–112. doi: 10.1016/j.neuint.2006.03.018. [DOI] [PubMed] [Google Scholar]
  • 48.Campbell B., Adams J., Shin Y.K., Lefer A.M. Cardioprotective effects of a novel proteasome inhibitor following ischemia and reperfusion in the isolated perfused rat heart. J. Mol. Cell Cardiol. 1999;31:467–476. doi: 10.1006/jmcc.1998.0880. [DOI] [PubMed] [Google Scholar]
  • 49.Pye J., Ardeshirpour F., McCain A., Bellinger D.A., Merricks E., Adams J., Elliott P.J., Pien C., Fisher T.H., Baldwin A.S., Nichols T.C. Proteasome inhibition ablates activation of NF-κB in myocardial reperfusion and reduces reperfusion injury. Am. J. Physiol. Heart Circ. Physiol. 2003;264:H919–H926. doi: 10.1152/ajpheart.00851.2002. [DOI] [PubMed] [Google Scholar]
  • 50.Stansfield W.E., Moss N.C., Willis M.S., Tang R., Selzman C.H. Proteasome inhibition attenuates infarct size and preserves cardiac function in a murine model of myocardial ischemia-reperfusion injury. Ann. Thorac. Surg. 2007;84:120–125. doi: 10.1016/j.athoracsur.2007.02.049. [DOI] [PubMed] [Google Scholar]
  • 51.Shah I.M., Lees K.R., Elliott P.J. Early clinical experience with the novel proteasome inhibitor PS-519. Brit. J. Clin. Pharmacol. 2002;54:269–276. doi: 10.1046/j.1365-2125.2002.01638.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Buchan A.M., Li H., Blackburn B. Neuroprotection achieved with a novel proteasome inhibitor which blocks NF-kappaB activation. Neuroreport. 2000;11:427–430. doi: 10.1097/00001756-200002070-00041. [DOI] [PubMed] [Google Scholar]
  • 53.Takaoka M., Ohkita M., Matsumura Y. Pathophysiological role of proteasome-dependent proteolytic pathway in endothelin-1-related cardiovascular diseases. Curr. Vasc. Pharmacol. 2003;1:19–26. doi: 10.2174/1570161033386637. [DOI] [PubMed] [Google Scholar]
  • 54.Itoh M., Takaoka M., Shibata A., Okhita M., Matsumura Y. Preventive effect of lactacystin, a selective proteasome inhibitor, on ischemic acute renal failure in rats. J. Pharmacol. Exp. Ther. 2001;298:501–507. [PubMed] [Google Scholar]
  • 55.Ostrowska J.K., Wojtukiewicz M.Z., Chabielska E., Buczko W., Ostrowska H. Proteasome inhibitor prevents experimental arterial thrombosis in renovascular hypertensive rats. Thromb. Haemost. 2004;92:171–177. doi: 10.1160/TH03-11-0707. [DOI] [PubMed] [Google Scholar]
  • 56.Morgan E.N., Pohlman T.H., Vocelka C. Nuclear factor kappa B mediates a procoagulant response in monocytes during extracorporeal circulation. J. Thorac. Cardiovasc. Surg. 2003;125:165–171. doi: 10.1067/mtc.2003.99. [DOI] [PubMed] [Google Scholar]
  • 57.Ostrowska-Roszczenko, J.K., Ostrowska, H., Wojtukiewicz, M.Z., Radziwon, P., Szczepanski, M. and Wolczynski, S. Proteasome inhibition prevents tissue factor expression in human endothelial cells exposed to diverse agonists via inhibition of NF-kappaB in cultured endothelial cells. 41st Meeting of the Polish Biochem.Soc., Bialystok, 2006, 200.
  • 58.Ostrowska H., Wojcik C., Omura S., Worowski K. Lactacystin, a specific inhibitor of the proteasome, inhibits human platelet lysosomal cathepsin A-like enzyme. Biochem. Biophys. Res. Commun. 1997;234:729–732. doi: 10.1006/bbrc.1997.6434. [DOI] [PubMed] [Google Scholar]
  • 59.Geier E., Pfeifer G., Wilm M., Lucchiari-Hartz M., Baumeister W., Eichmann K., Niedermann G. A giant protease with potential to substitute for some functions of the proteasome. Science. 1999;283:978–981. doi: 10.1126/science.283.5404.978. [DOI] [PubMed] [Google Scholar]
  • 60.Sakamoto K.M., Kim K.B., Kumagai A., Mercurio F., Crews C.M., Deshaies R.J. Protacs: chimeric molecules that target proteins to the Skp1-cullin-F box complex for ubiquitination and degradation. Proc. Natl. Acad. Sci. 2001;98:8554–8559. doi: 10.1073/pnas.141230798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Zhang D., Baek S.H., Ho A., Kim K. Degradation of target protein in living cells by small-molecule proteolysis inducers. Bioorg. Med. Chem. Lett. 2004;14:645–648. doi: 10.1016/j.bmcl.2003.11.042. [DOI] [PubMed] [Google Scholar]
  • 62.Sakamoto K.M., Kim K.B., Verma R., Ransick A., Stein B., Crews C.M., Deshaies R.J. Development of protacs to target cancer-promoting proteins for ubiquitination and degradation. Mol. Cell. Proteomics. 2003;2:1350–1358. doi: 10.1074/mcp.T300009-MCP200. [DOI] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES