Abstract
The ubiquitin-proteasome system is responsible for the degradation of most intracellular proteins, including those that control cell cycle progression, apoptosis, signal transduction and the NF-κB transcriptional pathway. Aberrations in the ubiquitin-proteasome system underlie the pathogenesis of many human diseases, so both the ubiquitin-conjugating system and the 20S proteasome are important targets for drug discovery. This article presents a few of the most important examples of the small molecule inhibitors and modulators targeting the ubiquitin-proteasome system, their mode of action, and their potential therapeutic relevance in the treatment of cancer and inflammatory-related diseases.
Keywords: E3 ubiquitin ligases, Proteasome, Inhibitors, Modulators, Therapeutic potential, Cancer, Stroke, Cardiovascular diseases
Full Text
The Full Text of this article is available as a PDF (419.5 KB).
Abbreviations used
- AML
acute myeloid leukemia
- ARF
acute renal failure
- BMSCs
bone marrow stromal cells
- βTrPC
β-transducin repeat containing protein
- CDK
cyclindependent kinase
- ChT-L
chymotrypsin-like
- C-L
caspase-like
- CLL
chronic lymphocytic leukemia
- DHT
dihydroxytestosterone
- DOCA
deoxycortycosterone
- DUB
deubiquitinating enzyme
- E1
ubiquitin-activating enzyme
- E2
ubiquitin-conjugating enzyme
- E3
ubiquitin-protein ligase
- ET-1
endothelin-1
- Hdm2
human counterpart of Mdm2
- HIF-1
hypoxia inducible factor
- IKK
IκB kinase
- IL-1
interleukin
- INF-γ
interferon gamma
- LMP
low-molecular-mass polypeptide
- Mdm2
murine double minute 2
- Met-AP-2
metionine aminopeptidase-2
- MHC
major histocompatibility complex
- MM
multiple myeloma
- NF-κB
nuclear factor-kappaB
- pIκBα
phosphorylated inhibitor-κβ
- Protacs
proteolytic targeting chimeric molecules
- pVHL
phosphorylated von Hippel-Lindau tumor suppressor
- RITA
reactivation of p53 and induction of tumor cell apoptosis
- SCF
complex formed by Skp1, cullin and F-box protein
- siRNA
small interfering RNA
- SKP2
S-phase kinase associated protein 2
- SMPI
small molecule proteolysis inducers
- T-L
trypsin-like
- TNF
tumor necrosis factor
- UPS
ubiquitin-proteasome system
- VCAM
various leukocyte adhesion molecules
- VEGF
vascular endothelial growth factor
Footnotes
Paper authored by participants of the international conference: XXXIV Winter School of the Faculty of Biochemistry, Biophysics and Biotechnology of Jagiellonian University, Zakopane, March 7–11, 2007, “The Cell and Its Environment”. Publication cost was partially covered by the organisers of this meeting.
References
- 1.Glickman M.H., Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol. Rev. 2001;82:373–428. doi: 10.1152/physrev.00027.2001. [DOI] [PubMed] [Google Scholar]
- 2.Ciechanover A., Schwartz A.L. The ubiquitin system: pathogenesis of human diseases and drug targeting. Biochim. Biophys. Acta. 2004;1695:3–7. doi: 10.1016/j.bbamcr.2004.09.018. [DOI] [PubMed] [Google Scholar]
- 3.Herrmann J., Ciechanover A., Lerman L.O., Lerman A. The ubiquitinproteasome system in cardiovascular diseases-a hypothesis extended. Cardiovasc. Res. 2004;61:11–21. doi: 10.1016/j.cardiores.2003.09.033. [DOI] [PubMed] [Google Scholar]
- 4.Wojcik C., Di Napoli M. Ubiquitin-proteasome system and proteasome inhibition: new strategies in stroke therapy. Stroke. 2004;35:1506–1518. doi: 10.1161/01.STR.0000126891.93919.4e. [DOI] [PubMed] [Google Scholar]
- 5.Nalepa G., Rolfe M., Harper J.W. Drug discovery in the ubiquitinproteasome system. Nature. 2006;5:596–623. doi: 10.1038/nrd2056. [DOI] [PubMed] [Google Scholar]
- 6.Burger A., Seth A.K. The ubiquitin-mediated protein degradation pathway in cancer: therapeutic implications. Eur. J. Cancer. 2004;40:2217–2229. doi: 10.1016/j.ejca.2004.07.006. [DOI] [PubMed] [Google Scholar]
- 7.Sun Y. E3 ubiquitin ligases as cancer targets and biomarkers. Neoplasia. 2006;8:645–654. doi: 10.1593/neo.06376. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Kisselev A.F., Goldberg A.L. Proteasome inhibitors: from research tools to drug candidates. Chem. Biol. 2001;8:739–758. doi: 10.1016/S1074-5521(01)00056-4. [DOI] [PubMed] [Google Scholar]
- 9.Delcros J.G., Floch M.B., Prigent C., Arlot-Bonnemains Y. Proteasome inhibitors as therapeutic agents: current and future strategies. Curr. Med. Chem. 2003;10:479–503. doi: 10.2174/0929867033368231. [DOI] [PubMed] [Google Scholar]
- 10.Joazeiro C.A.P., Anderson K.C., Hunter T. Proteasome inhibitor drugs on the rise. Cancer Res. 2006;66:7840–7842. doi: 10.1158/0008-5472.CAN-06-2033. [DOI] [PubMed] [Google Scholar]
- 11.Voorhees P.M., Orlowski R.Z. The proteasome and proteasome inhibitors in cancer therapy. Annu. Rev. Pharmacol. Toxicol. 2006;46:189–213. doi: 10.1146/annurev.pharmtox.46.120604.141300. [DOI] [PubMed] [Google Scholar]
- 12.Orlowski Z. The ubiquitin proteasome pathway from bench to bedside. Hematology. 2005;1:220–225. doi: 10.1182/asheducation-2005.1.220. [DOI] [PubMed] [Google Scholar]
- 13.Zhou P. Targeted protein degradation. Curr. Opin. Chem. Biol. 2005;9:51–55. doi: 10.1016/j.cbpa.2004.10.012. [DOI] [PubMed] [Google Scholar]
- 14.Michael D., Oren M. The p53-Mdm2 module and the ubiquitin system. Semin. Cancer Biol. 2003;13:49–58. doi: 10.1016/S1044-579X(02)00099-8. [DOI] [PubMed] [Google Scholar]
- 15.Vassilev L.T., Vu B.T., Graves B., Carvajal D., Podlaski F., Filipovic Z., Kong N., Kammlott U., Lukacs C., Klein C., Fotouhi N., Liu E.A. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science. 2004;303:844–848. doi: 10.1126/science.1092472. [DOI] [PubMed] [Google Scholar]
- 16.Issaeva N., Bozko P., Enge M., Protopopowa M., Verhoef L.G., Masucci M., Pramanik A., Selivanova G. Small molecule RITA binds to p53, blocks p53-HDM2 interaction and activates p53 function in tumors. Nature Med. 2004;10:1321–1328. doi: 10.1038/nm1146. [DOI] [PubMed] [Google Scholar]
- 17.Maerken T.V., Speleman F., Vermuelen J., Lambertz I., Clercq S., Smet E., Yigit N., Coppens V., Philippe J., Paepe A., Marine J., Vandesompele J. Small-molecule MDM2 antagonists as a new therapy concept for neuroblastoma. Cancer Res. 2006;66:9646–9655. doi: 10.1158/0008-5472.CAN-06-0792. [DOI] [PubMed] [Google Scholar]
- 18.Gstaiger M., Jordan R., Lim M., Catzavelos C., Mestan J., Slingerland J., Krek W. Skp2 is oncogenic and overexpressed in human cancers. Proc. Natl. Acad. Sci. (USA) 2001;24:5043–5048. doi: 10.1073/pnas.081474898. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Baldwin A.S. The transcription factor NF-κB and human diseases. J. Clin. Invest. 2001;107:3–6. doi: 10.1172/JCI11891. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Karin M. Nuclear factor-κB in cancer development and progression. Nature. 2006;44:431–436. doi: 10.1038/nature04870. [DOI] [PubMed] [Google Scholar]
- 21.Yamamoto Y., Gaynor R.B. Therapeutic poteκtial of inhibition of the NF-κB pathway in the treatment of inflammation and cancer. J. Clin. Invest. 2001;107:135–142. doi: 10.1172/JCI11914. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Yaron A., Gonen H., Alkalay I., Hatzubai A., Jung S., Beyth S., Mercurio F., Manning A.M., Ciechanover A., Ben-Neriah Y. Inhibition of NF-κB cellular function via specific targeting of the IκB-ubiquitin ligase. EMBO J. 1997;16:6486–6494. doi: 10.1093/emboj/16.21.6486. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Swinney D.C., Xu Y.Z., Scarafia L.E., Lee I., Mak A.Y., Gan Q.F., Ramesha C.S., Mulkins M.A., Dunn J., So O.Y., Biegel T., Dinh M., Volkel P., Barnett J., Dalrymple S.A., Lee S., Huber M. A small molecule ubiquitination inhibitor blocks NF-κB-dependent cytokine expression in cells and rats. J. Biol. Chem. 2002;277:2357–23581. doi: 10.1074/jbc.M200842200. [DOI] [PubMed] [Google Scholar]
- 24.Adams J. Proteasome inhibitors as new anticancer drugs. Curr. Opin. Oncol. 2002;14:628–634. doi: 10.1097/00001622-200211000-00007. [DOI] [PubMed] [Google Scholar]
- 25.Elliott P.J., Zollner T.M., Boehncke W.H. Proteasome inhibition: a new anti-inflammatory strategy. J. Mol. Med. 2003;81:235–245. doi: 10.1007/s00109-003-0422-2. [DOI] [PubMed] [Google Scholar]
- 26.Orlowski M., Wilk S. Catalytic activities of the 20S proteasome, a multicatalytic proteinase complex. Arch. Biochem. Biophys. 2000;383:1–16. doi: 10.1006/abbi.2000.2036. [DOI] [PubMed] [Google Scholar]
- 27.Groll M., Huber R. Inhibitors of eukaryotic 20S proteasome core particle: a structural approach. Biochim. Biophys. Acta. 2004;1695:33–44. doi: 10.1016/j.bbamcr.2004.09.025. [DOI] [PubMed] [Google Scholar]
- 28.Kloetzel P.M., Ossendorp F. Proteasome and peptidase function in MHC class I-mediated antigen presentation. Curr. Opin. Immunol. 2004;16:76–81. doi: 10.1016/j.coi.2003.11.004. [DOI] [PubMed] [Google Scholar]
- 29.Groll M., Huber R. Inhibitors of eukaryotic 20S proteasome core particle: a structural approach. Biochim. Biophys. Acta. 2004;1695:33–44. doi: 10.1016/j.bbamcr.2004.09.025. [DOI] [PubMed] [Google Scholar]
- 30.Hideshima T., Richardson P., Chauhan D., Palombella V.J., Elliot P.J., Adams J., Anderson K.C. The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer. Res. 2001;61:3071–3076. [PubMed] [Google Scholar]
- 31.Lee A.H., Iwakoshi N.N., Anderson K.C., Glimcher L.H. Proteasome inhibitors disrupt the unfolded protein response in myeloma cells. Proc. Natl. Acad. Sci (USA) 2003;100:9946–9951. doi: 10.1073/pnas.1334037100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Adams J., Kauffman M. Development of the proteasome inhibitor Velcade (Bortezomib) Cancer Invest. 2004;22:304–11. doi: 10.1081/CNV-120030218. [DOI] [PubMed] [Google Scholar]
- 33.Hideshima T., Mitsiades C., Akiyama M., Hayashi T., Chauhan D., Richardson P., Schlossman R., Podar K., Munshi N.C., Mitsiades N., Anderson K.C. Molecular mechanisms mediating antimyeloma activity of proteasome inhibitor PS-341. Blood. 2003;101:1530–1534. doi: 10.1182/blood-2002-08-2543. [DOI] [PubMed] [Google Scholar]
- 34.Mitsiades N., Mitsiades C.S., Richardson P.G., Poulaki V., Tai Y.Y., Chauhan D., Fanourakis G., Gu X., Bailey C., Joseph M., Libermann T.A., Schlossman R., Munshi N.C., Hideshima T., Anderson K.C. The proteasome inhibitor PS-341 potentates sensitivity of multiple myeloma cells to conventional chemotherapeutic agents: therapeutic applications. Blood. 2003;101:2377–2380. doi: 10.1182/blood-2002-06-1768. [DOI] [PubMed] [Google Scholar]
- 35.Vink J., Cloos J., Kaspers G.J.L. Proteasome inhibition as novel treatment strategy in leukaemia. Brit. J. Haematol. 2006;134:253–262. doi: 10.1111/j.1365-2141.2006.06170.x. [DOI] [PubMed] [Google Scholar]
- 36.Feling R.H., Buchanan G.O., Mincer T.J., Kauffman C.A., Jensen P.R., Fenical W. Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus salinospora. Angew. Chem. In. Ed. Engl. 2003;42:355–357. doi: 10.1002/anie.200390115. [DOI] [PubMed] [Google Scholar]
- 37.Kuhn, D.J., Chen, Q., Voorhees, P.M., Strader, J.S., Shenk, K.D., Sun, C.M., Demo, S.D., Bennet, M.K., Leewen, F.W., Chanan-Khan, A.A. and Orlowski, R.Z. Potent activity of carfilzomib, a novel, irreversible inhibitor of the ubiquitin-proteasome pathway, against pre-clinical models of multiple myeloma. Blood (2007) prepublished online. [DOI] [PMC free article] [PubMed]
- 38.Ho A., Bargagna-Mohan P., Wehenkel M., Mohan R., Kim K. LMP2-specific inhibitors: chemical genetic tools for proteasome biology. Chem. Biol. 2007;14:419–430. doi: 10.1016/j.chembiol.2007.03.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Chauhan D., Catley L., Li G., Podar K., Hideshima T., Velankar M., Mitsiades N., Yasui H., Letai A., Ovaa H., Berkers C., Nicholson B., Chao T., Neuteboom S.T., Richardson P., Palladino M.A., Anderson C. A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from bortezomib. Cancer Cell. 2005;8:407–419. doi: 10.1016/j.ccr.2005.10.013. [DOI] [PubMed] [Google Scholar]
- 40.Ruiz S., Krupnik Y., Keating M., Chandra J., Palladino M., McConkey D. The proteasome inhibitor NPI-0052 is a more effective inducer of apoptosis than bortezomib in lymphocytes from patients with chronic lymphocytic leukemia. Mol. Cancer Ther. 2006;7:1836–1843. doi: 10.1158/1535-7163.MCT-06-0066. [DOI] [PubMed] [Google Scholar]
- 41.Stapnes C., Doskeland A.P., Hatfield K., Ersvaer E., Ryningen A., Lorens J.B. The proteasome inhibitors bortezomib and PR-171 have antiproliferative and proapoptotic effects on primary human acute myeloid leukaemia cells. Brit. J. Haematol. 2007;136:814–828. doi: 10.1111/j.1365-2141.2007.06504.x. [DOI] [PubMed] [Google Scholar]
- 42.Di Napoli M., Papa F. MLN-519: Milenium/PAION. Curr. Opin. Invest. Drugs. 2003;4:333–341. [PubMed] [Google Scholar]
- 43.Phillips J.B., Williams A.J., Adams J., Elliott P.J., Tortella F.C. Proteasome inhibitor PS519 reduced infarction and attenuates leukocyte infiltration in a rat model of focal cerebral ischemia. Stroke. 2000;31:1686–1693. doi: 10.1161/01.str.31.7.1686. [DOI] [PubMed] [Google Scholar]
- 44.Zhang L., Zhang Z.G., Zhang R.L., Lu M., Adams J., Elliott P.J., Chopp M. Postischemic (6-hour) treatment with recombinant human tissue plasminogen activator and proteasome inhibitor PS-519 reduces infarction in a rat model of embolic focal cerebral ischemia. Stroke. 2001;32:2926–2931. doi: 10.1161/hs1201.100207. [DOI] [PubMed] [Google Scholar]
- 45.Berti R., Williams A.J., Velarde L.C., Moffett J.R., Elliott P.J., Adams J., Yao C., Dave J.R., Tortella F.C. Effect of the proteasome inhibitor MLN519 on the expression of inflammatory molecules following middle cerebral artery occlusion and reperfusion in the rat. Neurotox. Res. 2003;5:505–514. doi: 10.1007/BF03033160. [DOI] [PubMed] [Google Scholar]
- 46.Williams A.J., Dave J.R., Elliot P.J., Adams J., Tortella F.C. Delayed treatment of ischemic/reperfusion brain injury: extended therapeutic window with the proteasome inhibitor MLN519. Stroke. 2004;35:1186–1191. doi: 10.1161/01.STR.0000125721.10606.dc. [DOI] [PubMed] [Google Scholar]
- 47.Williams A.J., Dave J.R., Tortella F.C. Neuroprotection with the proteasome inhibitor MLN519 in focal ischemic brain injury: relation to nuclear factor kappa B (NF-kappaB), inflammatory gene expression, and leukocyte infiltration. Neurochem. Int. 2006;49:106–112. doi: 10.1016/j.neuint.2006.03.018. [DOI] [PubMed] [Google Scholar]
- 48.Campbell B., Adams J., Shin Y.K., Lefer A.M. Cardioprotective effects of a novel proteasome inhibitor following ischemia and reperfusion in the isolated perfused rat heart. J. Mol. Cell Cardiol. 1999;31:467–476. doi: 10.1006/jmcc.1998.0880. [DOI] [PubMed] [Google Scholar]
- 49.Pye J., Ardeshirpour F., McCain A., Bellinger D.A., Merricks E., Adams J., Elliott P.J., Pien C., Fisher T.H., Baldwin A.S., Nichols T.C. Proteasome inhibition ablates activation of NF-κB in myocardial reperfusion and reduces reperfusion injury. Am. J. Physiol. Heart Circ. Physiol. 2003;264:H919–H926. doi: 10.1152/ajpheart.00851.2002. [DOI] [PubMed] [Google Scholar]
- 50.Stansfield W.E., Moss N.C., Willis M.S., Tang R., Selzman C.H. Proteasome inhibition attenuates infarct size and preserves cardiac function in a murine model of myocardial ischemia-reperfusion injury. Ann. Thorac. Surg. 2007;84:120–125. doi: 10.1016/j.athoracsur.2007.02.049. [DOI] [PubMed] [Google Scholar]
- 51.Shah I.M., Lees K.R., Elliott P.J. Early clinical experience with the novel proteasome inhibitor PS-519. Brit. J. Clin. Pharmacol. 2002;54:269–276. doi: 10.1046/j.1365-2125.2002.01638.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.Buchan A.M., Li H., Blackburn B. Neuroprotection achieved with a novel proteasome inhibitor which blocks NF-kappaB activation. Neuroreport. 2000;11:427–430. doi: 10.1097/00001756-200002070-00041. [DOI] [PubMed] [Google Scholar]
- 53.Takaoka M., Ohkita M., Matsumura Y. Pathophysiological role of proteasome-dependent proteolytic pathway in endothelin-1-related cardiovascular diseases. Curr. Vasc. Pharmacol. 2003;1:19–26. doi: 10.2174/1570161033386637. [DOI] [PubMed] [Google Scholar]
- 54.Itoh M., Takaoka M., Shibata A., Okhita M., Matsumura Y. Preventive effect of lactacystin, a selective proteasome inhibitor, on ischemic acute renal failure in rats. J. Pharmacol. Exp. Ther. 2001;298:501–507. [PubMed] [Google Scholar]
- 55.Ostrowska J.K., Wojtukiewicz M.Z., Chabielska E., Buczko W., Ostrowska H. Proteasome inhibitor prevents experimental arterial thrombosis in renovascular hypertensive rats. Thromb. Haemost. 2004;92:171–177. doi: 10.1160/TH03-11-0707. [DOI] [PubMed] [Google Scholar]
- 56.Morgan E.N., Pohlman T.H., Vocelka C. Nuclear factor kappa B mediates a procoagulant response in monocytes during extracorporeal circulation. J. Thorac. Cardiovasc. Surg. 2003;125:165–171. doi: 10.1067/mtc.2003.99. [DOI] [PubMed] [Google Scholar]
- 57.Ostrowska-Roszczenko, J.K., Ostrowska, H., Wojtukiewicz, M.Z., Radziwon, P., Szczepanski, M. and Wolczynski, S. Proteasome inhibition prevents tissue factor expression in human endothelial cells exposed to diverse agonists via inhibition of NF-kappaB in cultured endothelial cells. 41st Meeting of the Polish Biochem.Soc., Bialystok, 2006, 200.
- 58.Ostrowska H., Wojcik C., Omura S., Worowski K. Lactacystin, a specific inhibitor of the proteasome, inhibits human platelet lysosomal cathepsin A-like enzyme. Biochem. Biophys. Res. Commun. 1997;234:729–732. doi: 10.1006/bbrc.1997.6434. [DOI] [PubMed] [Google Scholar]
- 59.Geier E., Pfeifer G., Wilm M., Lucchiari-Hartz M., Baumeister W., Eichmann K., Niedermann G. A giant protease with potential to substitute for some functions of the proteasome. Science. 1999;283:978–981. doi: 10.1126/science.283.5404.978. [DOI] [PubMed] [Google Scholar]
- 60.Sakamoto K.M., Kim K.B., Kumagai A., Mercurio F., Crews C.M., Deshaies R.J. Protacs: chimeric molecules that target proteins to the Skp1-cullin-F box complex for ubiquitination and degradation. Proc. Natl. Acad. Sci. 2001;98:8554–8559. doi: 10.1073/pnas.141230798. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 61.Zhang D., Baek S.H., Ho A., Kim K. Degradation of target protein in living cells by small-molecule proteolysis inducers. Bioorg. Med. Chem. Lett. 2004;14:645–648. doi: 10.1016/j.bmcl.2003.11.042. [DOI] [PubMed] [Google Scholar]
- 62.Sakamoto K.M., Kim K.B., Verma R., Ransick A., Stein B., Crews C.M., Deshaies R.J. Development of protacs to target cancer-promoting proteins for ubiquitination and degradation. Mol. Cell. Proteomics. 2003;2:1350–1358. doi: 10.1074/mcp.T300009-MCP200. [DOI] [PubMed] [Google Scholar]