Abstract
Survivin, a member of the inhibitor of apoptosis (IAP) protein family, is associated with malignant transformation and is over-expressed in most human tumors. Using lipoplex-mediated transfection, we evaluated the activity of the reporter enzyme, luciferase, expressed from plasmids encoding the enzyme under the control of either the cytomegalovirus (CMV) or survivin promoters, in tumor- and non-tumor-derived human and murine cells. We also examined whether there is a correlation between the survivin promoter-driven expression of luciferase and the level of endogenous survivin. Human cancer cells (HeLa, KB, HSC-3, H357, H376, H413), oral keratinocytes, GMSM-K, and chemically immortalized human mammary cells, 184A-1, were transfected with Metafectene at 2 μl/1 μg DNA. Murine squamous cell carcinoma cells, SCCVII, mouse embryonic fibroblasts, NIH-3T3, and murine immortalized mammary cells, NMuMG, were transfected with Metafectene PRO at 2 μl/1 μg DNA. The expression of luciferase was driven by the CMV promoter (pCMV.Luc), the human survivin promoter (pSRVN.Luc-1430), or the murine survivin promoters (pSRVN.Luc-1342 and pSRVN.Luc-194). Luciferase activity was measured, using the Luciferase Assay System and expressed as relative light units (RLU) per ml of cell lysate or per mg of protein. The level of survivin in the lysates of human cells was determined by ELISA and expressed as ng survivin/mg protein. In all cell lines, significantly higher luciferase activity was driven by the CMV promoter than by survivin promoters. The expression of luciferase driven by the CMV and survivin promoters in murine cells was much higher than that in human cells. The cells displayed very different susceptibilities to transfection; nevertheless, high CMV-driven luciferase activity appeared to correlate with high survivin-promoter driven luciferase expression. The survivin concentration in lysates of cancer cells ranged from 5.8 ± 2.3 to 24.3 ± 2.9 ng/mg protein (mean, 13.7 ng/mg). Surprisingly, elevated survivin protein was determined in lysates of non-tumor-derived cells. Survivin levels for GMSM-K and 184A-1 cells, were 16.7 ± 8.7 and 13.5 ± 6.2 ng/mg protein, respectively. The expression of endogenous survivin did not correlate with the level of survivin promoter-driven transgene activity in the same cells. The expression of survivin by non-tumorigenic, transformed cell lines may be necessary for their proliferative activity. The level of survivin promoter-driven gene expression achieved via liposomal vectors in OSCC cells was too low to be useful in cancer-cell specific gene therapy.
Key words: Transfection, Survivin, Metafectene, Metafectene PRO, Survivin promoter, Non-cancer cells, CMV promoter, Oral squamous cell carcinoma cells
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Abbreviations used
- DMEM
Dulbecco’s modified Eagle’s MEM medium
- FBS
fetal bovine serum
- HNSCC
head and neck squamous cell carcinoma
- IAP
inhibitor of apoptosis
- OSCC
oral squamous cell carcinoma
- RLU
relative light units
References
- 1.Hanahan D., Weinberg R.A. The hallmarks of cancer. Cell. 2000;100:57–70. doi: 10.1016/S0092-8674(00)81683-9. [DOI] [PubMed] [Google Scholar]
- 2.Evan G.I., Vousden K.H. Proliferation, cell cycle and apoptosis in cancer. Nature. 2001;411:342–348. doi: 10.1038/35077213. [DOI] [PubMed] [Google Scholar]
- 3.Salvesen G.S., Duckett C.S. IAP proteins: blocking the road to death’s door. Natl. Rev. Mol. Cell Biol. 2002;3:401–410. doi: 10.1038/nrm830. [DOI] [PubMed] [Google Scholar]
- 4.Li F., Altieri D.C. The caner anti-apoptosis mouse survivin gene: characterization of locus and transcriptional requirements of basal and cell cycle-dependent expression. Cancer Res. 1999;59:3142–3151. [PubMed] [Google Scholar]
- 5.Altieri D.C. Validating survivin as a cancer therapeutic target. Nat. Rev. Cancer. 2003;3:46–54. doi: 10.1038/nrc968. [DOI] [PubMed] [Google Scholar]
- 6.Altieri D.C. Molecular circuits of apoptosis regulation and cell division control: The survivin paradigm. J. Cell. Biochem. 2004;92:656–663. doi: 10.1002/jcb.20140. [DOI] [PubMed] [Google Scholar]
- 7.Altieri D.C. Targeted therapy by disabling crossroad signaling networks: the survivin paradigm. Mol. Cancer Ther. 2006;5:478–482. doi: 10.1158/1535-7163.MCT-05-0436. [DOI] [PubMed] [Google Scholar]
- 8.Dohi T., Beltrami E., Wall N.R., Plescia J., Altieri D.C. Mitochondrial survivin inhibits apoptosis and promotes tumorigenesis. J. Clin. Invest. 2004;114:1117–1127. doi: 10.1172/JCI22222. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Ambrosini G., Adida C., Altieri D.C. A novel anti-apoptotic gene, survivin, expressed in cancer and lymphoma. Nat. Med. 1997;3:917–921. doi: 10.1038/nm0897-917. [DOI] [PubMed] [Google Scholar]
- 10.Adida C., Crotty P.L., McGrath J., Berrebi D., Diebold J., Altieri D.C. Developmentally regulated expression of the novel cancer antiapoptosis gene survivin in human and mouse differentiation. Am. J. Pathol. 1998;152:43–49. [PMC free article] [PubMed] [Google Scholar]
- 11.Fukuda S., Pelus L.M. Regulation of the inhibitor-of-apoptosis family member survivin in normal cord blood and bone marrow CD34+ cells by hematopoietic growth factors: Implications of survivin expression in normal hematopoiesis. Blood. 2001;98:2091–2100. doi: 10.1182/blood.V98.7.2091. [DOI] [PubMed] [Google Scholar]
- 12.Altieri D.C. Survivin and apoptosis control. Adv. Cancer Res. 2003;88:31–52. doi: 10.1016/S0065-230X(03)88303-3. [DOI] [PubMed] [Google Scholar]
- 13.Johnson M.E., Howerth E.W. Survivin: a bifunctional inhibitor of apoptosis protein. Vet. Pathol. 2004;41:599–607. doi: 10.1354/vp.41-6-599. [DOI] [PubMed] [Google Scholar]
- 14.Lo Muzio L., Pannone G., Leonardi R., Staibano S., Mignogna M.D., De Rosa G., Kudo Y., Takata T., Altieri D.C. Survivin, a potential early predictor of tumor progression in the oral mucosa. J. Dent. Res. 2003;82:923–928. doi: 10.1177/154405910308201115. [DOI] [PubMed] [Google Scholar]
- 15.Lo Muzio L., Pannone G., Staibano S., Mignogna M.D., Rubini C., Mariggiò M.A., Procaccini M., Ferrari F., De Rosa G., Altieri D.C. Survivin expression in oral squamous cell carcinoma. Brit. J. Cancer. 2003;89:2244–2248. doi: 10.1038/sj.bjc.6601402. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Lo Muzio L., Campisi G., Giovanelli L., Ammatuna P., Greco I., Staibano S., Pannone G., De Rosa G., Di Liberto C., D’Angelo M. HPV DNA and survivin expression in epithelial oral carcinogenesis: a relationship? Oral Oncol. 2004;40:736–741. doi: 10.1016/j.oraloncology.2003.11.011. [DOI] [PubMed] [Google Scholar]
- 17.Tanaka C., Uzawa K., Shibahara T., Yokoe H., Noma H., Tanzawa H. Expression of an inhibitor of apoptosis, survivin, in oral carcinogenesis. J. Dent. Res. 2003;82:607–811. doi: 10.1177/154405910308200807. [DOI] [PubMed] [Google Scholar]
- 18.Lin C.Y., Hung H.C., Kuo H.C., Chiang C.P., Kuo M.Y. Survivin expression predicts poorer prognosis in patients with areca quid chewingrelated oral squamous cell carcinoma in Taiwan. Oral Oncol. 2005;41:645–654. doi: 10.1016/j.oraloncology.2005.02.009. [DOI] [PubMed] [Google Scholar]
- 19.Bao R., Connolly D.C., Murphy M., Green J., Weinstein J.K., Pisarcik D.A., Hamilton T. Activation of cancer-specific gene expression by the survivin promoter. J. Natl. Cancer Inst. 2002;94:522–528. doi: 10.1093/jnci/94.7.522. [DOI] [PubMed] [Google Scholar]
- 20.Chiou S., Jones M.K., Tarnawski A.S. Survivin- an anti-apoptosis protein: its biological roles and implications for cancer and beyond. Med. Sci. Monit. 2003;9:P143–P147. [PubMed] [Google Scholar]
- 21.Chen J.S., Liu J.C., Shen L., Rau K.M., Kuo H.P., Li Y.M., Shi D., Lee Y.C., Chang K.J., Hung M.C. Cancer-specific activation of the survivin promoter and its potential use in gene therapy. Cancer Gene Ther. 2004;11:740–747. doi: 10.1038/sj.cgt.7700752. [DOI] [PubMed] [Google Scholar]
- 22.Scully C. Oral precancer: preventive and medical approaches to management. Eur. J. Cancer B Oral Oncol. 1995;31(B):16–26. doi: 10.1016/0964-1955(94)00049-A. [DOI] [PubMed] [Google Scholar]
- 23.Schepman K., der Meij E., Smeele L., der Waal I. Concomitant leukoplakia in patients with oral squamous cell carcinoma. Oral. Dis. 1999;5:206–209. doi: 10.1111/j.1601-0825.1999.tb00302.x. [DOI] [PubMed] [Google Scholar]
- 24.Choi S., Myers J.N. Molecular pathogenesis of oral squamous cell carcinoma: implications for therapy. J. Dent. Res. 2007;87:14–32. doi: 10.1177/154405910808700104. [DOI] [PubMed] [Google Scholar]
- 25.Lo Muzio L., Staibano S., Pannone G., Mignona M.D., Mariggio A., Salvatore G., Chieffi P., Tramontano D., De Rosa G., Altieri D.C. Expression of the apoptosis inhibitor survivin in aggressive squamous cell carcinoma. Exp. Mol. Pathol. 2001;70:249–254. doi: 10.1006/exmp.2001.2367. [DOI] [PubMed] [Google Scholar]
- 26.Lo Muzio L., Farina A., Rubini C., Pezzetti F., Stabellini G., Laino G., Santarelli A., Pannone G., Bufo P., de Lillo A., Carinci F. Survivin as prognostic factor in squamous cell carcinoma of the oral cavity. Cancer Lett. 2005;225:27–33. doi: 10.1016/j.canlet.2004.11.024. [DOI] [PubMed] [Google Scholar]
- 27.Harras, A., Edwards, B.K., Blot, W.J. and Ries, L.A. Cancer rates and risks. National Institutes of Health, Bethesda, MD. NIH Publication (1996) No. 96–691.
- 28.Silverman S., Jr. Oral cancer: complication of therapy. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 1999;88:122–126. doi: 10.1016/S1079-2104(99)70103-4. [DOI] [PubMed] [Google Scholar]
- 29.Shillitoe E.J. Gene therapy for oral cancer: recent progress in research. Oral Oncol. 1998;34:157–160. doi: 10.1016/S1368-8375(98)00002-5. [DOI] [PubMed] [Google Scholar]
- 30.Xi S., Grandis J.R. Gene therapy for the treatment of oral squamous cell carcinoma. J. Dental. Res. 2003;82:11–16. doi: 10.1177/154405910308200104. [DOI] [PubMed] [Google Scholar]
- 31.Ladeinde A.L., Ogunlewe M.O., Adeyemo W.L., Bamgbose B.O. Gene therapy in the management of oral cancer: a review of recent documents. Niger. Postgrad. Med. J. 2005;12:18–22. [PubMed] [Google Scholar]
- 32.Gibbs J.B. Mechanism based target identification and drug discovery in cancer research. Science. 2000;287:1969–1973. doi: 10.1126/science.287.5460.1969. [DOI] [PubMed] [Google Scholar]
- 33.Hart I.R. Tissue specific promoters in targeting systemically delivered gene therapy. Semin. Oncol. 1996;23:154–158. [PubMed] [Google Scholar]
- 34.O’Malley B.W., Cope K.A., Chen S.-H., Li D., Schwartz M.R., Woo S.L.C. Combination gene therapy for oral cancer in a murine model. Cancer Res. 1996;56:1737–1741. [PubMed] [Google Scholar]
- 35.O’Malley B.W., Cope K.A., Johnson C.S., Schwartz M.R. A new immunocompetent murine model for oral cancer. Arch. Otolaryngol. Head Neck Surg. 1997;123:20–24. doi: 10.1001/archotol.1997.01900010022003. [DOI] [PubMed] [Google Scholar]
- 36.Yen, A., Overlid, N., Li, F., Düzgüneş N. and Konopka, K. Survivin promoter-driven gene expression in human oral cancer cells. The 85th General Session of the International Association for Dental Research and 36th Annual Meeting of the American Association for Dental Research, New Orleans, LA, 2007, J. Dent. Res.86 (Special issue A) Abstract No. 0758, Seq. #98.
- 37.Spain, C., Overlid, N., Li, F., Düzgüneş, N. and Konopka, K. Murine survivin promoter-driven gene expression in cancer and non-tumor cells. International Association for Dental Research and 36th Annual Meeting of the American Association for Dental Research, New Orleans, LA, 2007, J. Dent. Res.86 (Special issue A) Abstract No. 2394, Seq. #240.
- 38.Li F., Altieri D.C. Transcriptional analysis of human survivin gene expression. Biochem. J. 1999;344:305–311. doi: 10.1042/0264-6021:3440305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Yang L., Cao Z., Li F., Post D.E., Van Meir E.G., Zhong H., Wood W.C. Tumor-specific gene expression using the survivin promoter is further increased by hypoxia. Gene Ther. 2004;11:1215–1223. doi: 10.1038/sj.gt.3302280. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Zhu Z.B., Makhija S.K., Lu B., Wang M., Kaliberova L., Liu B., Rivera A.A., Nettelbeck D.M., Mahasreshti P.J., Leath C.A., III, Barker S., Yamaoto M., Li F., Alvarez R.D., Curiel D.T. Transcriptional targeting of tumors with a novel tumor-specific survivin promoter. Cancer Gene Ther. 2004;11:256–262. doi: 10.1038/sj.cgt.7700679. [DOI] [PubMed] [Google Scholar]
- 41.Matsumoto K., Horikoshi M., Rikimaru K., Enomoto S. A study of an in vitro model for invasion of oral squamous cell carcinoma. J. Oral Pathol. Med. 1989;18:498–501. doi: 10.1111/j.1600-0714.1989.tb01350.x. [DOI] [PubMed] [Google Scholar]
- 42.Prime S.S., Nixon S.V.R., Crane I.J., Stone A., Matthews J.B., Maitland N.J., Remnant L., Powell S.K., Game S.M., Scully C. The behaviour of human oral squamous cell carcinoma in cell culture. J. Pathol. 1990;160:259–269. doi: 10.1002/path.1711600313. [DOI] [PubMed] [Google Scholar]
- 43.Eagle H. Propagation in a fluid medium of a human epidermoid carcinoma strain KB. Proc. Soc. Exp. Biol. Med. 1955;89:362–364. doi: 10.3181/00379727-89-21811. [DOI] [PubMed] [Google Scholar]
- 44.Gilchrist E.P., Moyer M.P., Shillitoe E.J., Clare N., Murrah V.A. Establishment of a human polyclonal oral epithelial cell line. Oral Surg. Oral Med Oral Pathol. Oral Radiol. Endod. 2000;90:340–347. doi: 10.1067/moe.2000.107360. [DOI] [PubMed] [Google Scholar]
- 45.Stampfer M.R., Bartley J.C. Induction of transformation and continuous cell lines from normal human mammary epithelial cells after exposure to benzeno(a)pyrene. Proc. Nat. Acad. Sci. 1985;82:2394–2398. doi: 10.1073/pnas.82.8.2394. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Walen K.H., Stampfer M.R. Chromosome analyses of human mammary epithelial cells at stages of chemical-induced transformation progression to immortality. Cancer Genet. Cytogenet. 1989;37:249–261. doi: 10.1016/0165-4608(89)90056-3. [DOI] [PubMed] [Google Scholar]
- 47.Fu K.K., Rayner P.A., Lam K.N. Modification of the effects of continuous low dose irradiation by concurrent chemotherapy infusion. Int. J. Radiat. Oncol. Biol. Phys. 1984;10:1473–1478. doi: 10.1016/0360-3016(84)90371-7. [DOI] [PubMed] [Google Scholar]
- 48.Jainchill J.L., Aaronson S.A., Todaro G.J. Murine sarcoma and leukemia viruses: assay using clonal lines of contact-inhibited mouse cells. J. Virol. 1969;4:549–553. doi: 10.1128/jvi.4.5.549-553.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.Owens R.B., Smith H.S., Hackett A.J. Epithelial cell cultures from normal glandular tissue of mice. J. Natl. Cancer Inst. 1974;53:261–269. doi: 10.1093/jnci/53.1.261. [DOI] [PubMed] [Google Scholar]
- 50.Konopka K., Fallah B., Monzon-Duller J., Overlid N., Düzgüneş N. Serum-resistant gene transfer to oral cancer cells by Metafectene and GeneJammer: Application to HSV-tk/ganciclovir-mediated cytotoxicity. Cell. Mol. Biol. Lett. 2005;10:455–470. [PubMed] [Google Scholar]
- 51.Fields R.D., Lancaster M.V. Dual-attribute continuous monitoring of cell proliferation/cytotoxicity. Am. Biotechnol. Lab. 1993;11:48–50. [PubMed] [Google Scholar]
- 52.Konopka, K., Pretzer, E., Felgner, P.L. and Düzgüneş, N. Human immunodeficiency virus type-1 (HIV-1) infection increases the sensitivity of macrophages and THP-1 cells to cytotoxicity by cationic liposomes. Biochim. Biophys. Acta1312 (1996) 186-196. [DOI] [PubMed]
- 53.Konopka K., Overlid N., Nagaraj A.C., Düzgüneş N. Serum decreases the size of Metafectene- and GeneJammer-DNA complexes but does not affect significantly their transfection activity in SCCVII squamous cell carcinoma cells. Cell. Mol. Biol. Lett. 2006;11:171–190. doi: 10.2478/s11658-006-0015-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54.Bandyopadhyay A., Cibull M.L., Sun L. Isolation and characterization of a spontaneously transformed mouse mammary epithelial cell line in culture. Carcinogenesis. 1998;19:1907–1911. doi: 10.1093/carcin/19.11.1907. [DOI] [PubMed] [Google Scholar]
- 55.Zhu Z.B., Makhija S.K., Lu B., Wang M., Wang S., Takayama K., Siegal G.P., Reynolds P.N., Curiel D.T. Targeting mesothelioma using an infectivity enhanced survivin-conditionally replicative adenoviruses. J. Thorac. Oncol. 2006;1:701–711. doi: 10.1097/01243894-200609000-00017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56.Li B., Liu X., Fan J., Qi R., Bo L., Gu J., Qian Q., Qian C., Liu X. A survivin-mediated oncolytic adenovirus induces non-apoptotic cell death in lung cancer cells and shows antitumoral potential in vivo. J. Gene Med. 2006;8:1232–1242. doi: 10.1002/jgm.953. [DOI] [PubMed] [Google Scholar]
- 57.Ulasov I.V., Zhu Z.B., Tyler M.A., Han Y., Rivera A.A., Khramtsov A., Curiel D.T., Lesniak M.S. Survivin-driven and fiber-modified oncolytic adenovirus exhibits potent antitumor activity in established intracranial glioma. Hum. Gene Ther. 2007;18:589–602. doi: 10.1089/hum.2007.002. [DOI] [PubMed] [Google Scholar]
- 58.Kamizono J., Nagano S., Murofushi Y., Komiya S., Fujiwara H., Matsuishi T., Kosai K. Survivin-responsive conditionally replicating adenovirus exhibits cancer-specific and efficient viral replication. Cancer Res. 2005;65:5284–5291. doi: 10.1158/0008-5472.CAN-04-2657. [DOI] [PubMed] [Google Scholar]
- 59.Xu Y., Fang F., Ludewig G., Jones G., Jones D. A mutation found in the promoter region of the human survivin gene is correlated to overexpression of survivin in cancer cells. DNA Cell Biol. 2004;23:527–537. doi: 10.1089/dna.2004.23.527. [DOI] [PubMed] [Google Scholar]
- 60.Jang J.S., Kim K.M., Kang K.H., Choi J.E., Lee W.K., Kim C.H., Kang Y.M., Kam S., Kim I.S., Jun J.E., Park J.Y. Polymorphisms in the survivin gene and the risk of lung cancer. Lung Cancer. 2008;60:31–39. doi: 10.1016/j.lungcan.2007.09.008. [DOI] [PubMed] [Google Scholar]
- 61.Borbely A.A., Murvai M., Szarka K., Konya J., Gergely L., Hernadi Z., Veress G. Survivin promoter polymorphism and cervical carcinogenesis. J. Clin. Pathol. 2007;60:303–306. doi: 10.1136/jcp.2006.037804. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 62.Kappler M., Kotzsch M., Bartel F., Füssel S., Lautenschläger C., Schmidt U., Würl P., Bache M., Schmidt H., Taubert H., Meye A. Elevated expression level of survivin protein in soft-tissue sarcomas is a strong independent predictor of survival. Clin. Cancer Res. 2003;9:1098–1104. [PubMed] [Google Scholar]