Abstract
DNMT inhibitors are promising new drugs for cancer therapies. In this study, we have observed the antileukemic action of two diverse DNMT inhibitors, the nucleoside agent zebularine and the non-nucleoside agent RG108, in human promyelocytic leukemia (PML) HL-60 cells. Zebularine but not RG108 caused dose- and time-dependent cell growth inhibition and induction of apoptosis. However, co-treatment with either drug at a non-toxic dose and all trans retinoic acid (RA) reinforced differentiation to granulocytes, while 24 or 48 h-pretreatment with zebularine or RG108 followed by RA alone or in the presence of HDAC inhibitors (sodium phenyl butyrate or BML-210) significantly accelerated and enhanced cell maturation to granulocytes. This occurs in parallel with the expression of a surface biomarker, CD11b, and early changes in histone H4 acetylation and histone H3K4me3 methylation. The application of both drugs to HL-60 cells in continuous or sequential fashion decreased DNMT1 expression, and induced E-cadherin promoter demethylation and reactivation at both the mRNA and the protein levels in association with the induction of granulocytic differentiation. The results confirmed the utility of zebularine and RG108 in combinations with RA and HDAC inhibitors to reinforce differentiation effects in promyelocytic leukemia.
Key words: HL-60, Differentiation, RG108, Zebularine, HDAC inhibitors, E-cadherin, Histones
Full Text
The Full Text of this article is available as a PDF (1.6 MB).
Abbreviations used
- AcH4
acetylated histone H4
- APL
acute promyelocytic leukemia
- DMSO
dimethyl sulfoxide
- DNMT
DNA methyltransferase
- GAPDH
glyceraldehyde-3-phosphate dehydrogenase
- H3K4me3
trimethyl histone H4 methylated at lysine 4 (K4)
- HDAC
histone deacetylase
- HPR
horseradish peroxidase
- NBT
nitro blue tetrazolium
- PB
sodium phenyl butyrate
- PBS
phosphate-buffered saline
- PE
phycoerythrin
- PI
propidium iodide
- zebularine
1-(β-D-ribofuranosyl)-2(1-H)-pyrimidone
- PMA
phorbol myristate acetate
- RA
all-trans retinoic acid
- RG108
2-(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)-3-(1H-indol-3-yl) propanoic acid
References
- 1.Baylin S.B., Herman J.G., Graff J.R., Vertino P.M., Issa J.P. Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv. Cancer Res. 1998;72:141–196. doi: 10.1016/S0065-230X(08)60702-2. [DOI] [PubMed] [Google Scholar]
- 2.Toyota M., Kopecky K.J., Toyota M.O., Jair K.W., Willman C.L., Issa J.P. Methylation profiling in acute myeloid leukemia. Blood. 2001;9:2823–2829. doi: 10.1182/blood.V97.9.2823. [DOI] [PubMed] [Google Scholar]
- 3.Paz M.F., Fraga M.F., Avila S., Avila S., Guo M., Pollan M., Herman J.G., Esteller M. A systematic profile of DNA methylation in human cancer cell lines. Cancer Res. 2003;63:1114–1121. [PubMed] [Google Scholar]
- 4.Teofilini L., Martini M., Luongo M., Diverio D., Capelli G., Breccia M., Lo Coco F., Leone G., Larocca L.M. Hypermethylation of CpG islands in the promoter region of p15 (INK4b) in acute promyelocytic leukemia represses p15 (INK4b) expression and correlates with poor prognosis. Leukemia. 2003;17:919–924. doi: 10.1038/sj.leu.2402907. [DOI] [PubMed] [Google Scholar]
- 5.Ekmekci C.G., Gutiérrez M.I., Siraj A.K., Ozbek U., Bhatia K. Aberrant methylation of multiple tumor suppressor genes in acute myeloid leukemia. Am. J. Hematol. 2004;77:233–240. doi: 10.1002/ajh.20186. [DOI] [PubMed] [Google Scholar]
- 6.Mizuno S., Chijiwa T., Okamura T., Akashi K., Fukumaki Y., Niho Y., Sasaki H. Expression of DNA methyltransferases DNMT1, 3A, and 3B in normal hematopoiesis and in acute and chronic myelogenous leukemia. Blood. 2001;97:1172–1179. doi: 10.1182/blood.V97.5.1172. [DOI] [PubMed] [Google Scholar]
- 7.Silverman L.R., Holland J.F., Weinberg R.S., Alter B.P., Davi R.B., Ellison R.R., Demakos E.P., Cornell C.J., Jr., Carey R.W., Schiffer C. Effect of treatment with 5-aza cytidine on the in vivo and in vitro hematopoiesis in patients with myelodysplastic syndromes. Leukemia. 1993;7:21–29. [PubMed] [Google Scholar]
- 8.Issa J.P., Garcia-Manero G., Giles F.J., Mannari R., Thomas D., Faderl S., Bayar E., Lyons J., Rosenfeld C., Cortes J., Kantarjian H.M. Phase I study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2′-deoxycytidine (decitabine) in hematopoietic malignancies. Blood. 2004;103:1635–1640. doi: 10.1182/blood-2003-03-0687. [DOI] [PubMed] [Google Scholar]
- 9.Bug G., Ottmann O.G. The HDAC system and association with acute leukemias and myelodysplastic syndromes. Invest. New Drugs. 2010;28(Suppl 1):S36–49. doi: 10.1007/s10637-010-9595-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Cashen A.F., Schiller G.J., O’Donnell M.R., DiPersio J.F. Multicenter, phase II study of decitabine for the first-line treatment of older patients with acute myeloid leukemia. J. Clin. Oncol. 2010;28:556–561. doi: 10.1200/JCO.2009.23.9178. [DOI] [PubMed] [Google Scholar]
- 11.Müller S., Krämer O.H. Inhibitors of HDACs-effective drugs against cancer? Curr. Cancer Drug Targets. 2010;10:210–228. doi: 10.2174/156800910791054149. [DOI] [PubMed] [Google Scholar]
- 12.Kim C.H., Marquez V.E., Mao D.T., Haines D.R., McCormack J.J. Synthesis of pyrimidin-2-one nucleosides as acid-stable inhibitors of cytidine deaminase. J. Med. Chem. 1986;29:1374–1380. doi: 10.1021/jm00158a009. [DOI] [PubMed] [Google Scholar]
- 13.Hurd P.J., Whitmarsh A.J., Baldwin G.S., Kelly S.M., Waltho J.P., Price N.C., Connolly B.A., Hornby D.P. Mechanism-based inhibition of C5-cytosine DNA methyltransferases by 2-H pyrimidone. J. Mol. Biol. 1999;286:389–401. doi: 10.1006/jmbi.1998.2491. [DOI] [PubMed] [Google Scholar]
- 14.Zhou L., Cheng X., Connolly B.A., Dickman M.J., Hurd P.J., Hornby D.P. Zebularine: a novel DNA methylation inhibitor that forms a covalent complex with DNA methyltransferases. J. Mol. Biol. 2002;23:581–599. doi: 10.1016/S0022-2836(02)00676-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Cheng J.C., Matsen C.B., Gonzales F.A., Ye W., Greer S., Marquez V.E., Jones P.A., Selker E.U. Inhibition of DNA methylation and reactivation of silenced genes by zebularine. J. Natl. Cancer Inst. 2003;95:399–409. doi: 10.1093/jnci/95.5.399. [DOI] [PubMed] [Google Scholar]
- 16.Marquez V.E., Kelly J.A., Agbaria R., Ben-Kasus T., Cheng J.C., Yoo C.B., Jones P.A. Zebularine: a unique molecule for an epigenetically based strategy in cancer chemotherapy. Ann. N. Y. Acad. Sci. 2005;1008:246–254. doi: 10.1196/annals.1359.037. [DOI] [PubMed] [Google Scholar]
- 17.Cheng J.C., Weisenberger D.J., Gonzales F.A., Liang G., Xu G.L., Hu Y.G., Marquez V.E., Jones P.A. Continuous zebularine treatment effectively sustains demethylation in human bladder cancer cells. Mol. Cell Biol. 2004;24:1270–1278. doi: 10.1128/MCB.24.3.1270-1278.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Scott S.A., Lakshimikuttysamma A., Sheridan D.P., Sanche S.E., Geyer C.R., DeCoteau J.F. Zebularine inhibits human myeloid leukemia cell growth in vitro in association with p15INK4B demethylation and reexpression. Exp. Hematol. 2007;35:263–273. doi: 10.1016/j.exphem.2006.10.005. [DOI] [PubMed] [Google Scholar]
- 19.Veerla S., Panagopoulos I., Jin Y., Lindgren D., Höglund M. Promoter analysis of epigenetically controlled genes in bladder cancer. Genes Chromosomes Cancer. 2008;47:368–378. doi: 10.1002/gcc.20542. [DOI] [PubMed] [Google Scholar]
- 20.Brueckner B., Boy R.G., Siedlecki P., Musch T., Kliem H.C., Zielenkiewicz P., Suhai S., Wiessler M., Lyko F. Epigenetic reactivation of tumor suppressor genes by a novel small-molecule inhibitor of human DNA methyltransferases. Cancer Res. 2005;65:6305–6311. doi: 10.1158/0008-5472.CAN-04-2957. [DOI] [PubMed] [Google Scholar]
- 21.Tsai H.-C., Baylin S.B. Cancer epigenetics: linking basic biology to clinical medicine. Cell. Res. 2011;21:502–517. doi: 10.1038/cr.2011.24. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Cameron E.E., Bachman K.E., Myohanen S., Herman J.G., Baylin S.B. Synergy of demethylation and histone deacetylase inhibition in the reexpression of genes silenced in cancer. Nat. Genet. 1999;21:103–107. doi: 10.1038/5047. [DOI] [PubMed] [Google Scholar]
- 23.Gore S.D., Baylin S., Sugar E., Carraway H., Miller C.B., Carducci M., Grever M., Galm O., Dauses T., Karp J.E., Rudek M.A., Zhao M., Smith B.D., Manning J., Jiemjit A., Dover G., Mays A., Zwiebel J., Murgo A., Weng L.J., Herman J.G. Combined DNA methyltransferase and histone deacetylase inhibition in the treatment of myeloid neoplasms. Cancer Res. 2006;66:6361–6369. doi: 10.1158/0008-5472.CAN-06-0080. [DOI] [PubMed] [Google Scholar]
- 24.Blum W., Klisovic R.B., Hackanson B., Liu Z., Liu S., Devine H., Vukosavljevic T., Huynh L., Lozanski G., Kefauver C., Plass C., Devine S.M., Heerema N.A., Murgo A., Chan K.K., Grever M.R., Byrd J.C., Marcucci G. Phase I study of decitabine alone or in combination with valproic acid in acute myeloid leukemia. J. Clin. Oncol. 2007;25:3884–3891. doi: 10.1200/JCO.2006.09.4169. [DOI] [PubMed] [Google Scholar]
- 25.Herman J., Merlo J.J., Baylin S.B. Hypermethylation-associated inactivation indicates a tumor suppressor role for p15 INK4b. Cancer Res. 1996;56:722–727. [PubMed] [Google Scholar]
- 26.Herman J.G., Civin C.I., Issa J.P., Collector M.I., Sharkis S.J., Baylin S.B. Distinct patterns of inactivation of p15INK4B and p16INK4A characterize the major types of hematological malignancies. Cancer Res. 1997;57:837–841. [PubMed] [Google Scholar]
- 27.Cameron E.E., Baylin S.B., Herman J.G. p15INK4B CpG island methylation in primary acute leukemia is heterogeneous and suggests density as a critical factor for transcriptional silencing. Blood. 1999;94:2445–2451. [PubMed] [Google Scholar]
- 28.Oki Y., Issa J.P. Epigenetic mechanisms in AML-a target for therapy. Cancer Treat. Res. 2010;145:19–40. doi: 10.1007/978-0-387-69259-3_2. [DOI] [PubMed] [Google Scholar]
- 29.Ribeiro-Filho L.A., Franks J., Sasaki M., Shiina H., Li L.C., Nojima D., Arap S., Carroll P., Enokida H., Nakagawa M., Yonezawa S., Dahiya R. CpG hypermethylation of promoter region and inactivation of E-cadherin gene in human bladder cancer. Mol. Carcinog. 2002;34:187–198. doi: 10.1002/mc.10064. [DOI] [PubMed] [Google Scholar]
- 30.Corn P.G., Smith B.D., Ruckdeschel E.S., Douglas D., Baylin S.B., Herman J.G. E-cadherin expression is silenced by 5′CpG island methylation in acute myeloid leukemia. Clin. Cancer Res. 2000;6:4243–4248. [PubMed] [Google Scholar]
- 31.Melki J.R., Vincent P.C., Brown R.D., Clark S.J. Hypermethylation of E-cadherin in leukemia. Blood. 2000;95:3208–3213. [PubMed] [Google Scholar]
- 32.Shimamoto T., Ohyashiki J.H., Ohyashiki K. Methylation of p15 (INK4b) and E-cadherin genes is independently correlated with poor prognosis in acute myeloid leukemia. Leuk. Res. 2005;6:653–659. doi: 10.1016/j.leukres.2004.11.014. [DOI] [PubMed] [Google Scholar]
- 33.Farinha N.J., Shaker S., Lemaire M., Momparler L., Bernstein M., Momparler R.L. Activation of expression of p15, p73 and E-cadherin in leukemic cells by different concentrations of 5-aza-2′-deoxycytidine (Decitabine) Anticancer Res. 2004;24:75–78. [PubMed] [Google Scholar]
- 34.Collins S. The HL-60 promyelocytic leukemia cell line: proliferation, differentiation and cellular oncogene expression. Blood. 1987;70:1233–1244. [PubMed] [Google Scholar]
- 35.Hurley C.K. Electrophoresis of histones: a modified Panyim and Chalkley system for slab gels. Anal. Biochem. 1977;80:624–626. doi: 10.1016/0003-2697(77)90687-X. [DOI] [PubMed] [Google Scholar]
- 36.Nayera H., El-Shakankiry M.D., Ghada I., Mossallam M.D. p15 (INK4B) and E-cadherin CpG Island methylation is frequent in Egyptian acute myeloid leukemia. J. Egypt. Nat. Cancer Inst. 2006;18:227–232. [PubMed] [Google Scholar]
- 37.Chuang J.C., Yoo C.B., Kwan J.M., Li T.W., Liang G., Yang A.S., Jones P.A. Comparison of biological effects of non-nucleoside DNA methylation inhibitors versus 5-aza-2′-deoxycytidine. Mol. Cancer Ther. 2005;4:1515–1520. doi: 10.1158/1535-7163.MCT-05-0172. [DOI] [PubMed] [Google Scholar]
- 38.Stressemann C., Brueckner B., Musch T., Stopper H., Lyko F. Functional diversity of DNA methyltransferase inhibitors in human cancer cell lines. Cancer Res. 2006;66:2794–2800. doi: 10.1158/0008-5472.CAN-05-2821. [DOI] [PubMed] [Google Scholar]
- 39.Flotho C., Claus R., Batz C., Schneider M., Sandrock I., Inhde S., Plass C., Niemeyer C.M., Lubbert M. The DNA methyltransferase inhibitors azacytidine, decitabine and zebularine exert differential effects on cancer gene expression in acute myeloid leukemia cells. Leukemia. 2009;23:1019–1028. doi: 10.1038/leu.2008.397. [DOI] [PubMed] [Google Scholar]
- 40.Ben-Kausus T., Ben-Zvi Z., Marquez V.E., Kelly J.A., Agbaria R. Metabolic activation of zebularine, a novel DNA methylation inhibitor, in human bladder carcinoma cells. Biochem. Pharmacol. 2005;70:121–133. doi: 10.1016/j.bcp.2005.04.010. [DOI] [PubMed] [Google Scholar]
- 41.Lemaire M., Momparlier L.F., Bernstein M.L., Marquez V.E., Momparlier R.L. Enhancement of antineoplastic action of 5-aza-2′-deoxycytidine by zebularine on L1210 leukemia. Anticancer Drugs. 2005;16:301–308. doi: 10.1097/00001813-200503000-00009. [DOI] [PubMed] [Google Scholar]
- 42.Cheng C.C., Yoo C.B., Weisenberg D.J., Chuang J., Wozniak C., Liang G., Marquez V.E., Greer S., Orntoft T.F., Thykjaer T., Jones P.A. Preferential response of cancer cells to zebularine. Cancer Cell. 2004;6:151–158. doi: 10.1016/j.ccr.2004.06.023. [DOI] [PubMed] [Google Scholar]
- 43.Gotz C., Wagner P., Issinger O.G., Montenarh M. p21WAF1/CIP 1 interacts with protein kinase CK2. Oncogene. 1996;13:391–398. [PubMed] [Google Scholar]
- 44.Waga S., Hannon G.J., Beach D., Stillman B. The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA. Nature. 1994;369:1766–1771. doi: 10.1038/369574a0. [DOI] [PubMed] [Google Scholar]
- 45.Chuang L.S., Ian H.I., Koh T.W., Ng H.H., Xu G., Li B.F. Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21 Waf1. Science. 1996;277:2000. doi: 10.1126/science.277.5334.1996. [DOI] [PubMed] [Google Scholar]
- 46.Velicesku M., Weisenberger D.J., Gonzales F.A., Tsai Y.C., Nguen C.T., Jones P.A. Cell division is required for de novo methylation of CpG islands in bladder cancer. Cancer Res. 2002;62:2378–2384. [PubMed] [Google Scholar]
- 47.Millutinovic S., Zhuang Q., Niveleu A., Szyf M. Epigenomic stress response. Knockdown of DNA methyltransferase 1 triggers an intra-S-phase arrest of DNA replication and induction of stress response genes. J. Biol. Chem. 2003;278:14985–14995. doi: 10.1074/jbc.M213219200. [DOI] [PubMed] [Google Scholar]
- 48.Billam M., Sobolewski M.D., Davidson N.E. Effects of a novel DNA methyltransferase inhibitor zebularine on human breast cancer cells. Breast Cancer Res. Treat. 2010;120:581–592. doi: 10.1007/s10549-009-0420-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.Nieto M., Sampler E., Fraga M.F., Gonzales de Buitrago G., Esteller M., Serrano M. The absence of p53 is critical for the induction of apoptosis by 5-aza-2′-cytidine. Oncogene. 2004;3:735–743. doi: 10.1038/sj.onc.1207175. [DOI] [PubMed] [Google Scholar]
- 50.Neureither D., Zopf S., Leu T., Dietze O., Hauser-Kronberger C., Hahn E.G., Herold C., Ocker M. Apoptosis, proliferation and differentiation patterns are influenced by zebularine and SAHA in pancreatic cancer models. Scand. J. Gastroenterol. 2007;42:103–116. doi: 10.1080/00365520600874198. [DOI] [PubMed] [Google Scholar]
- 51.Savickiene J., Treigyte G., Jonusiene V., Bruzaite R., Borutinskaite V.-V., Navakauskiene R. Epigenetic changes by zebularine leading to enhanced differentiation of human promyelocytic leukemia NB4 and KG1 cells. Mol. Cell. Biochem. 2012;359:245–261. doi: 10.1007/s11010-011-1019-7. [DOI] [PubMed] [Google Scholar]
- 52.Martin S.J., Bradley G.J., Cotter T.G. HL-60 cells induced differentiate towards neutrophils subsequently die via apoptosis. Clin. Exp. Immunol. 1990;79:448–453. doi: 10.1111/j.1365-2249.1990.tb08110.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.Nagy I., Thomazy V.A., Shipley G.L., Fesus L., Lamph W., Heyman R.A., Chandraratana R.A., Davies P.I. Activation of retinoid X receptors induces apoptosis in HL-60 cell line. Mol. Cell Biol. 1995;15:3440–3451. doi: 10.1128/mcb.15.7.3540. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54.Watson R.W., Rostein O.D., Parodo J., Bitar R., Hackman D., Marshall J.C. Granulocytic differentiation of HL-60 cells result in spontaneous apoptosis mediated by increased caspase expression. FEBS Letters. 1997;412:603–609. doi: 10.1016/S0014-5793(97)00779-5. [DOI] [PubMed] [Google Scholar]
- 55.Ozeki M., Shively J.E. Differential cell fates induced by all-trans retinoic acid-treated HL-60 human leukemia cells. J. Leuk. Biol. 2008;84:769–779. doi: 10.1189/jlb.1207817. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56.Ueno H., Kizaki M., Matsushita H., Muto A., Yamato K., Nishihara T., Hid T., Yoshimura H., Koeffler H.P., Ikeda Y. A novel retinoic acid receptor (RAR)-selective antagonist inhibits differentiation and apoptosis of HL-60 cells: implications of RARα-mediated signals in myeloid leukemic cells. Leuk. Res. 1998;6:517–525. doi: 10.1016/S0145-2126(98)00026-5. [DOI] [PubMed] [Google Scholar]
- 57.De The H., Lavau C., Marchio A., Chomienne C., Degos L., Dejean A. A PML-RARα fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell. 1991;66:675–684. doi: 10.1016/0092-8674(91)90113-D. [DOI] [PubMed] [Google Scholar]
- 58.Altucci L., Rossin A., Raffelsberger W., Reitmair A., Chomienne C., Gronemeyer H. Retinoic acid-induced apoptosis in leukemia cells is mediated by paracrine action of tumor-selective death ligand TRAIL. Nat. Med. 2001;7:680–686. doi: 10.1038/89050. [DOI] [PubMed] [Google Scholar]
- 59.Benoit G.R., Flexor M., Besançon F., Altucci L., Rossin A., Hillion J., Balajthy Z., Legres L., Ségal-Bendirdjian E., Gronemeyer H., Lanotte M. Autonomous rexinoid death signaling is suppressed by converging signaling pathways in immature leukemia cells. Mol. Endocrinol. 2011;15:1154–1189. doi: 10.1210/me.15.7.1154. [DOI] [PubMed] [Google Scholar]
- 60.Rao S.P., Rechhsteiner M.P., Berger C., Sigrist J.A., Nadal D., Bernaqsconi M. Zebularine reactivates silenced E-cadherin but unlike 5-Azacytidine does not induce switching from latent to lytic Epstein-Barr virus infection in Burkit lymphoma Akata cells. Mol. Cancer. 2007;6:3–9. doi: 10.1186/1476-4598-6-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 61.Fazi F., Travaglini L., Carotti D., Palitti F., Diverio D., Alcalay M., McNamara S., Miller W.H., Jr., Lo Coco F., Pelicci P.G., Nervi C. Retinoic acid targets DNA-methyltransferases and histone deacetylases during APL blast differentiation in vitro and in vivo. Oncogene. 2005;24:1820–1830. doi: 10.1038/sj.onc.1208286. [DOI] [PubMed] [Google Scholar]
- 62.Griffiths E.A., Gore S.D. DNA methyltransferase and histone deacetyase inhibitors in the treatment of myelodysplastic syndromes. Semin. Hematol. 2008;45:23–30. doi: 10.1053/j.seminhematol.2007.11.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 63.Savickiene J., Borutinskaite V.-V., Treigyte G., Magnusson K.-E., Navakauskiene R. The novel deacetylase inhibitor BML-210 exerts growth inhibitory, proapoptotic and differentiation stimulating effects on the human leukemia cell lines. Europ. J. Pharmacol. 2006;549:9–18. doi: 10.1016/j.ejphar.2006.08.010. [DOI] [PubMed] [Google Scholar]
- 64.Bradbury C.A., Khanim F.L., Hayden R., Bunce C.M., White D.A., Drayson M.T., Craddock C., Turner B.M. Histone deacetylases in acute myeloid leukemia show a distinct pattern of expression that changes selectively in response to deacetylase inhibitors. Leukemia. 2005;19:1751–1759. doi: 10.1038/sj.leu.2403910. [DOI] [PubMed] [Google Scholar]
- 65.Wada T., Kikuchi J., Nishimura N., Shimizu R., Kitamura T., Furukawa Y. Expression levels of histone deacetylases determine the cell fate of hematopoietic progenitors. J. Biol. Chem. 2009;28:3073–3069. doi: 10.1074/jbc.M109.042242. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 66.Krämer O.H., Zhu P., Ostendorff H.P., Golebiewski M., Tiefenbach J., Peters M.A., Brill B., Groner B., Bach I., Heinzel T., Göttlicher M. The histone deacetylase inhibitor valproic acid selectively induces proteasomal degradation of HDAC2. EMBO J. 2003;22:3411–3420. doi: 10.1093/emboj/cdg315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 67.Gozzini A., Rovida E., Sbarba P.D., Galimbert S., Santini V. Butyrates, as a single drug, induce histone acetylation and granulocytic maturation: possible selectivity on core binding factor-acute myeloid leukemia blasts. Cancer Res. 2003;15:8955–8961. [PubMed] [Google Scholar]
- 68.Peinado H., Ballestar E., Esteller M., Cano A. Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex. Mol. Cell Biol. 2004;24:306–319. doi: 10.1128/MCB.24.1.306-319.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 69.Von Burstin J., Eser S., Paul M.C., Seidler B., Brandl M., Messer M., von Waerder A., Schmit A., Mages J., Pagel P., Schnieke R.M., Schneider G., Saur D. E-cadherin regulates metastasis of pancreatic cancer in vivo and is suppressed by a SNAIL/HDAC1/HDAC2 repressor complex. Gastroenterology. 2009;137:361–371. doi: 10.1053/j.gastro.2009.04.004. [DOI] [PubMed] [Google Scholar]
- 70.Grunstein M. Histone acetylation in chromatin structure and transcription. Nature. 1997;389:349–352. doi: 10.1038/38664. [DOI] [PubMed] [Google Scholar]
- 71.Strahl B.D., Allis D. The language of covalent histone modifications. Nature. 2000;403:41–45. doi: 10.1038/47412. [DOI] [PubMed] [Google Scholar]
- 72.Kouzarides T. Histone methylation in transcriptional control. Curr. Opin. Genet. Dev. 2002;12:198–209. doi: 10.1016/S0959-437X(02)00287-3. [DOI] [PubMed] [Google Scholar]
- 73.Thomson S., Clayton A. L., Mahadevan L.C. Independent dynamic regulation of histone phosphorylation and acetylation during immediateearly gene induction. Mol. Cell. 2001;8:1231–1241. doi: 10.1016/S1097-2765(01)00404-X. [DOI] [PubMed] [Google Scholar]
- 74.Nightingale K.P., Gendreizig S., White D.A., Bradbury C., Hollfelder F., Turner B.M. Cross-talk between histone modifications in response to histone deacetylase inhibitors. J. Biol. Chem. 2007;282:4408–4416. doi: 10.1074/jbc.M606773200. [DOI] [PubMed] [Google Scholar]
- 75.El-Osta A., Kandharidis P., Zalcberg J.R., Wolffe A.P. Precipitous release of methyl-CpG binding protein 2 and histone deacetylase 1 from the methylated human multidrug resistance gene (MDR1) on activation. Mol. Cell Biol. 2002;22:1844–1857. doi: 10.1128/MCB.22.6.1844-1857.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]