Abstract
Activation of the Hsp90 chaperone system is a characteristic of cancer cells. The regulation of chaperone activities involves their interaction with cochaperones; therefore we investigated the expression of Hsp70 and Hsp90 and their specific co-chaperones HOP and CHIP in cancer cell lines and primary cancers. Inhibition of Hsp90 by 17AAG increased the levels of Hsp70, Hsp90 and HOP but not CHIP mRNA in cancer cells. These changes are linked to activation of the HSF1 transcription factor and we show that the HOP promoter contains HSF1 binding sites, and that HSF1 binding to the HOP promoter is increased following 17AAG. The lack of alteration in the co-chaperone CHIP is explained by a lack of HSF response elements in the CHIP promoter. Non-proliferating cells expressed higher levels of CHIP and lower HOP, Hsp70 and Hsp90 levels compared to proliferating cells. Decreased expression of CHIP in proliferating cancer cells is in keeping with its proposed tumor suppressor properties, while over-expression of HOP in proliferating cells may contribute to excessive Hsp90 activity and stabilization of client proteins in tumors. In a panel of colorectal cancer samples, increased expression of Hsp70 and an increased ratio of HOP to CHIP were found, and were associated with decreased median survival. These data indicate that multiple changes occur in the chaperone/co-chaperone system in cancer that impact patient survival. It is likely that the ability to identify individual alterations to this system will be beneficial for treatment strategy decisions, particularly those that employ chaperone inhibitors.
Key words: Chaperone, Co-chaperone, Cancer, Hsp90, Hsp70, HOP, CHIP, HSF1, 17AAG
Full Text
The Full Text of this article is available as a PDF (496.9 KB).
Abbreviations used
- CHIP
C terminus of Hsc70-interacting protein
- HOP
Hsp70/Hsp90 organizing protein
- HSE
heat shock element
- HSF1
heat shock factor 1
- Hsp70
heat shock protein 70
- Hsp90
heat shock protein 90
- qRT-PCR
quantitative real-time polymerase chain reaction
- 17AAG
17-(allylamino)-17-demethoxygeldanamycin
References
- 1.Ciocca D.R., Calderwood S.K. Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones. 2005;10:86–103. doi: 10.1379/CSC-99r.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Workman P. Altered states: selectively drugging the Hsp90 cancer chaperone. Trends Mol. Med. 2004;10:47–51. doi: 10.1016/j.molmed.2003.12.005. [DOI] [PubMed] [Google Scholar]
- 3.Hernandez M.P., Sullivan W.P., Toft D.O. The assembly and intermolecular properties of the hsp70-Hop-hsp90 molecular chaperone complex. J. Biol. Chem. 2002;277:38294–38304. doi: 10.1074/jbc.M206566200. [DOI] [PubMed] [Google Scholar]
- 4.Kubota H., Yamamoto S., Itoh E., Abe Y., Nakamura A., Izumi Y., Okada H., Iida M., Nanjo H., Itoh H., Yamamoto Y. Increased expression of co-chaperone HOP with HSP90 and HSC70 and complex formation in human colonic carcinoma. Cell Stress Chaperones. 2010;15:1003–1011. doi: 10.1007/s12192-010-0211-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Sun W., Xing B., Sun Y., Du X., Lu M., Hao C., Lu Z., Mi W., Wu S., Wei H., Gao X., Zhu Y., Jiang Y., Qian X., He F. Proteome analysis of hepatocellular carcinoma by two-dimensional difference gel electrophoresis: novel protein markers in hepatocellular carcinoma tissues. Mol. Cell. Proteomics. 2007;6:1798–1808. doi: 10.1074/mcp.M600449-MCP200. [DOI] [PubMed] [Google Scholar]
- 6.Erlich R.B., Kahn S.A., Lima F.R., Muras A.G., Martins R.A., Linden R., Chiarini L.B., Martins V.R., Moura Neto V. STI1 promotes glioma proliferation through MAPK and PI3K pathways. Glia. 2007;55:1690–1698. doi: 10.1002/glia.20579. [DOI] [PubMed] [Google Scholar]
- 7.Kajiro M., Hirota R., Nakajima Y., Kawanowa K., So-ma K., Ito I., Yamaguchi Y., Ohie S.H., Kobayashi Y., Seino Y., Kawano M., Kawabe Y., Takei H., Hayashi S., Kurosumi M., Murayama A., Kimura K., Yanagisawa J. The ubiquitin ligase CHIP acts as an upstream regulator of oncogenic pathways. Nat. Cell. Biol. 2009;11:312–319. doi: 10.1038/ncb1839. [DOI] [PubMed] [Google Scholar]
- 8.Kundrat L., Regan L. Balance between folding and degradation for Hsp90-dependent client proteins: a key role for CHIP. Biochemistry. 2010;49:7428–7438. doi: 10.1021/bi100386w. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Scheufler C., Brinker A., Bourenkov G., Pegoraro S., Moroder L., Bartunik H., Hartl F.U., Moarefi I. Structure of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine. Cell. 2000;101:199–210. doi: 10.1016/S0092-8674(00)80830-2. [DOI] [PubMed] [Google Scholar]
- 10.Muller P., Hrstka R., Coomber D., Lane D.P., Vojtesek B. Chaperone-dependent stabilization and degradation of p53 mutants. Oncogene. 2008;27:3371–3383. doi: 10.1038/sj.onc.1211010. [DOI] [PubMed] [Google Scholar]
- 11.Banks L., Matlashewski G., Crawford L. Isolation of human-p53-specific monoclonal antibodies and their use in the studies of human p53 expression. Eur. J. Biochem. 1986;159:529–534. doi: 10.1111/j.1432-1033.1986.tb09919.x. [DOI] [PubMed] [Google Scholar]
- 12.Trepel J., Mollapour M., Giaccone G., Neckers L. Targeting the dynamic HSP90 complex in cancer. Nat. Rev. Cancer. 2010;10:537–549. doi: 10.1038/nrc2887. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Pick E., Kluger Y., Giltnane J.M., Moeder C., Camp R.L., Rimm D.L., Kluger H.M. High HSP90 expression is associated with decreased survival in breast cancer. Cancer Res. 2007;67:2932–2937. doi: 10.1158/0008-5472.CAN-06-4511. [DOI] [PubMed] [Google Scholar]
- 14.Li C.F., Huang W.W., Wu J.M., Yu S.C., Hu T.H., Uen Y.H., Tian Y.F., Lin C.N., Lu D., Fang F.M., Huang H.Y. Heat shock protein 90 overexpression independently predicts inferior disease-free survival with differential expression of the alpha and beta isoforms in gastrointestinal stromal tumors. Clin. Cancer Res. 2008;14:7822–7831. doi: 10.1158/1078-0432.CCR-08-1369. [DOI] [PubMed] [Google Scholar]
- 15.Kang G.H., Lee E.J., Jang K.T., Kim K.M., Park C.K., Lee C.S., Kang D.Y., Lee S.H., Sohn T.S., Kim S. Expression of HSP90 in gastrointestinal stromal tumours and mesenchymal tumours. Histopathology. 2010;56:694–701. doi: 10.1111/j.1365-2559.2010.03550.x. [DOI] [PubMed] [Google Scholar]
- 16.Stankiewicz M., Nikolay R., Rybin V., Mayer M.P. CHIP participates in protein triage decisions by preferentially ubiquitinating Hsp70-bound substrates. FEBS J. 2010;277:3353–3367. doi: 10.1111/j.1742-4658.2010.07737.x. [DOI] [PubMed] [Google Scholar]
- 17.Santagata S., Hu R., Lin N.U., Mendillo M.L., Collins L.C., Hankinson S.E., Schnitt S.J., Whitesell L., Tamimi R.M., Lindquist S., Ince T.A. High levels of nuclear heat-shock factor 1 (HSF1) are associated with poor prognosis in breast cancer. Proc. Natl. Acad. Sci. USA. 2011;108:18378–18383. doi: 10.1073/pnas.1115031108. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Dai C., Whitesell L., Rogers A.B., Lindquist S. Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell. 2007;130:1005–1018. doi: 10.1016/j.cell.2007.07.020. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Zou J., Guo Y., Guettouche T., Smith D.F., Voellmy R. Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell. 1998;94:471–480. doi: 10.1016/S0092-8674(00)81588-3. [DOI] [PubMed] [Google Scholar]