Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2008 Jul 25;13(4):649. doi: 10.2478/s11658-008-0029-2

Erythropoietin affects GABAergic transmission in hippocampal neurons in vitro

Tomasz Wójtowicz 1,, Jerzy W Mozrzymas 1
PMCID: PMC6275596  PMID: 18661111

Abstract

Erythropoietin is a potent regulator of erythropoiesis. It acts via the specific membrane receptor (EpoR). Erythropoietin is also known to be present in the central nervous system, and its concentration and the expression of EpoR change during development, which raises the possibility that this modulator might be involved in the regulation of neuronal functions in the developing brain. The GABAergic system undergoes profound changes during development and is particularly susceptible to modulation by endogenous factors. Therefore, we decided to investigate the impact of Epo on GABAergic transmission in hippocampal neurons developing in vitro. An analysis of miniature IPSCs (mIPSCs) revealed that a long-term treatment with Epo (48 or 72 h) resulted in a major acceleration of the decaying phase of these currents while the amplitude and current frequency remained unchanged. Interestingly, this effect was restricted to the youngest considered age group (6-8 DIV), indicating that Epomediated modulation of mIPSCs depends on the developmental stage of the neurons. We conclude that Epo may exert a modulatory action on GABAergic transmission in developing neural networks.

Key words: GABAA receptors, Erythropoietin, Miniature post synaptic current mIPSC, Neuronal culture

Full Text

The Full Text of this article is available as a PDF (412.0 KB).

Abbreviations used

Epo

erythropoietin

GABA

gamma aminobutyric acid

mIPSC

miniature inhibitory postsynaptic current

References

  • 1.Genc S., Koroglu T.F., Genc K. Erythropoietin and the nervous system. Brain Res. 2004;1000:19–31. doi: 10.1016/j.brainres.2003.12.037. [DOI] [PubMed] [Google Scholar]
  • 2.Digicaylioglu M., Bichet S., Marti H.H., Wenger R.H., Rivas L.A., Bauer C., Gassmann M. Localization of specific erythropoietin binding sites in defined areas of the mouse brain. Proc. Natl. Acad. Sci. USA. 1995;92:3717–3720. doi: 10.1073/pnas.92.9.3717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Masuda S., Nagao M., Takahata K., Konishi Y., Gallyas F., Jr., Tabira T., Sasaki R. Functional erythropoietin receptor of the cells with neural characteristics. Comparison with receptor properties of erythroid cells. J. Biol. Chem. 1993;268:11208–11216. [PubMed] [Google Scholar]
  • 4.Tan C.C., Eckardt K.U., Firth J.D., Ratcliffe P.J. Feedback modulation of renal and hepatic erythropoietin mRNA in response to graded anemia and hypoxia. Am. J. Physiol. 1992;263:F474–481. doi: 10.1152/ajprenal.1992.263.3.F474. [DOI] [PubMed] [Google Scholar]
  • 5.Brines M.L., Ghezzi P., Keenan S., Agnello D., de Lanerolle N.C., Cerami C., Itri L.M., Cerami A. Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury. Proc. Natl. Acad. Sci. USA. 2000;97:10526–10531. doi: 10.1073/pnas.97.19.10526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Kumral A., Ozer E., Yilmaz O., Akhisaroglu M., Gokmen N., Duman N., Ulukus C., Genc S., Ozkan H. Neuroprotective effect of erythropoietin on hypoxic-ischemic brain injury in neonatal rats. Biol. Neonat. 2003;83:224–228. doi: 10.1159/000068926. [DOI] [PubMed] [Google Scholar]
  • 7.Buemi M., Cavallaro E., Floccari F., Sturiale A., Aloisi C., Trimarchi M., Grasso G., Corica F., Frisina N. Erythropoietin and the brain: from neurodevelopment to neuroprotection. Clin. Sci. (Lond) 2002;103:275–282. doi: 10.1042/cs1030275. [DOI] [PubMed] [Google Scholar]
  • 8.Zhang F., Signore A.P., Zhou Z., Wang S., Cao G., Chen J. Erythropoietin protects CA1 neurons against global cerebral ischemia in rat: potential signaling mechanisms. J. Neurosci. Res. 2006;83:1241–1251. doi: 10.1002/jnr.20816. [DOI] [PubMed] [Google Scholar]
  • 9.Yang J., Huang Y., Yu X., Sun H., Li Y., Deng Y. Erythropoietin preconditioning suppresses neuronal death following status epilepticus in rats. Acta Neurobiol. Exp. (Wars) 2007;67:141–148. doi: 10.55782/ane-2007-1641. [DOI] [PubMed] [Google Scholar]
  • 10.Ransome M.I., Turnley A.M. Systemically delivered Erythropoietin transiently enhances adult hippocampal neurogenesis. J. Neurochem. 2007;102:1953–1965. doi: 10.1111/j.1471-4159.2007.04684.x. [DOI] [PubMed] [Google Scholar]
  • 11.Dame C., Bartmann P., Wolber E., Fahnenstich H., Hofmann D., Fandrey J. Erythropoietin gene expression in different areas of the developing human central nervous system. Brain Res. Dev. Brain Res. 2000;125:69–74. doi: 10.1016/S0165-3806(00)00118-8. [DOI] [PubMed] [Google Scholar]
  • 12.Juul S. Erythropoietin in the central nervous system, and its use to prevent hypoxic-ischemic brain damage. Acta Paediatr. Suppl. 2002;91:36–42. doi: 10.1080/080352502320764184. [DOI] [PubMed] [Google Scholar]
  • 13.Juul S.E., Yachnis A.T., Rojiani A.M., Christensen R.D. Immunohistochemical localization of erythropoietin and its receptor in the developing human brain. Pediatr. Dev. Pathol. 1999;2:148–158. doi: 10.1007/s100249900103. [DOI] [PubMed] [Google Scholar]
  • 14.Hollrigel G.S., Soltesz I. Slow kinetics of miniature IPSCs during early postnatal development in granule cells of the dentate gyrus. J. Neurosci. 1997;17:5119–5128. doi: 10.1523/JNEUROSCI.17-13-05119.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Andjus P.R., Stevic-Marinkovic Z., Cherubini E. Immunoglobulins from motoneurone disease patients enhance glutamate release from rat hippocampal neurones in culture. J. Physiol. 1997;504:103–112. doi: 10.1111/j.1469-7793.1997.103bf.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Pytel M., Wojtowicz T., Mercik K., Sarto-Jackson I., Sieghart W., Ikonomidou C., Mozrzymas J.W. 17 beta-estradiol modulates GABAergic synaptic transmission and tonic currents during development in vitro. Neuropharmacology. 2007;52:1342–1353. doi: 10.1016/j.neuropharm.2007.01.014. [DOI] [PubMed] [Google Scholar]
  • 17.Clements J.D. Transmitter timecourse in the synaptic cleft: its role in central synaptic function. Trends. Neurosci. 1996;19:163–171. doi: 10.1016/S0166-2236(96)10024-2. [DOI] [PubMed] [Google Scholar]
  • 18.Mozrzymas J.W. Dynamism of GABA(A) receptor activation shapes the “personality” of inhibitory synapses. Neuropharmacology. 2004;47:945–960. doi: 10.1016/j.neuropharm.2004.07.003. [DOI] [PubMed] [Google Scholar]
  • 19.Cherubini E., Gaiarsa J.L., Ben-Ari Y. GABA: an excitatory transmitter in early postnatal life. Trends. Neurosci. 1991;14:515–519. doi: 10.1016/0166-2236(91)90003-D. [DOI] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES