Abstract
Galectin-1 is a soluble carbohydrate-binding protein with a particularly high expression in skeletal muscle. Galectin-1 has been implicated in skeletal muscle development and in adult muscle regeneration, but also in the degeneration of neuronal processes and/or in peripheral nerve regeneration. Exogenously supplied oxidized galectin-1, which lacks carbohydrate-binding properties, has been shown to promote neurite outgrowth after sciatic nerve sectioning. In this study, we compared the expression of galectin-1 mRNA and immunoreactivity in innervated and denervated mouse and rat hind-limb and hemidiaphragm muscles. The results show that galectin-1 mRNA expression and immunoreactivity are up-regulated following denervation. The galectin-1 mRNA is expressed in the extrasynaptic and perisynaptic regions of the muscle, and its immunoreactivity can be detected in both regions by Western blot analysis. The results are compatible with a role for galectin-1 in facilitating reinnervation of denervated skeletal muscle.
Key words: Galectin-1, Skeletal muscle, Denervation
Full Text
The Full Text of this article is available as a PDF (688.9 KB).
Abbreviations used
- Gal1
galectin-1
- Inn
innervated
- Den
denervated
- PS
perisynaptic
- ES
extrasynaptic
References
- 1.Barondes S.H., Cooper D.N., Gitt M.A., Leffler H. Galectins. Structure and function of a large family of animal lectins. J. Biol. Chem. 1994;269:20807–20810. [PubMed] [Google Scholar]
- 2.Hsu D.K., Liu F.-T. Regulation of cellular homeostasis by galectins. Glycoconj. J. 2004;19:507–515. doi: 10.1023/B:GLYC.0000014080.95829.52. [DOI] [PubMed] [Google Scholar]
- 3.Cooper D.N., Barondes S.H. Evidence for export of a muscle lectin from cytosol to extracellular matrix and for a novel secretory mechanism. J. Cell. Biol. 1990;110:1681–1691. doi: 10.1083/jcb.110.5.1681. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Cooper D.N., Massa S.M., Barondes S.H. Endogenous muscle lectin inhibits myoblast adhesion to laminin. J. Cell. Biol. 1991;115:1437–1448. doi: 10.1083/jcb.115.5.1437. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Georgiadis V., Stewart H.J., Pollard H.J., Tavsanoglu Y., Prasad R., Horwood J., Deltour L., Goldring K., Poirier F., Lawrence-Watt D.J. Lack of galectin-1 results in defects in myoblast fusion and muscle regeneration. Dev. Dyn. 2007;236:1014–1024. doi: 10.1002/dvdy.21123. [DOI] [PubMed] [Google Scholar]
- 6.Watt D.J., Jones G.E., Goldring K. The involvement of galectin-1 in skeletal muscle determination, differentiation and regeneration. Glycoconj. J. 2004;19:615–619. doi: 10.1023/B:GLYC.0000014093.23509.92. [DOI] [PubMed] [Google Scholar]
- 7.McGraw J., McPhail L.T., Oschipok L.W., Horie H., Poirier F., Steeves J.D., Ramer M.S., Tetzlaff W. Galectin-1 in regenerating motoneurons. Eur. J. Neurosci. 2004;20:2872–2880. doi: 10.1111/j.1460-9568.2004.03802.x. [DOI] [PubMed] [Google Scholar]
- 8.Plachta N., Annaheim C., Bissière S., Lin S., Rüegg M., Hoving S., Müller D., Poirier F., Bibel M., Barde Y.-A. Identification of a lectin causing the degeneration of neuronal processes using engineered embryonic stem cells. Nat. Neurosci. 2007;10:712–719. doi: 10.1038/nn1897. [DOI] [PubMed] [Google Scholar]
- 9.Akazawa, C., Nakamura, Y., Sango, K., Horie, H. and Kohsaka, S. Distribution of the galectin-1 mRNA in the rat nervous system: its transient upregulation in rat facial motor neurons after facial nerve axotomy. Neurosci.125 (2004) 171-178. [DOI] [PubMed]
- 10.Whitney P.L., Powell J.T., Sanford G.L. Oxidation and chemical modification of lung β-galactoside-specific lectin. Biochem. J. 1986;238:683–689. doi: 10.1042/bj2380683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Horie H., Inagaki Y., Sohma Y., Nozawa R., Okawa K., Hasegawa M., Muramatsu N., Kawano H., Horie M., Koyama H., Sakai I., Takeshita K., Kowada Y., Takano M., Kadoya T. Galectin-1 regulates initial axonal growth in peripheral nerves after axotomy. J. Neurosci. 1999;19:9964–9974. doi: 10.1523/JNEUROSCI.19-22-09964.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Horie H., Kadoya T., Hikawa N., Sango K., Inoue H., Takeshita K., Asawa R., Hiroi T., Sato M., Yoshioka T., Ishikawa Y. Oxidized galectin-1 stimulates macrophages to promote axonal regeneration in peripheral nerves after axotomy. J. Neurosci. 2004;24:1873–1880. doi: 10.1523/JNEUROSCI.4483-03.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Magnusson C., Högklint L., Libelius R., Tågerud S. Expression of mRNA for plasminogen activators and protease nexin-1 in innervated and denervated mouse skeletal muscle. J. Neurosci. Res. 2001;66:457–463. doi: 10.1002/jnr.10000. [DOI] [PubMed] [Google Scholar]
- 14.Wilson T.J., Firth M.N., Powell J.T., Harrison F.L. The sequence of the mouse 14 kDa β-galactoside-binding lectin and evidence for its synthesis on free cytoplasmic ribosomes. Biochem. J. 1989;261:847–852. doi: 10.1042/bj2610847. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Magnusson C., Libelius R., Tågerud S. Nogo (reticulon 4) expression in innervated and denervated mouse skeletal muscle. Mol. Cell. Neurosci. 2003;22:298–307. doi: 10.1016/S1044-7431(02)00036-2. [DOI] [PubMed] [Google Scholar]
- 16.Svensson A., Libelius R., Tågerud S. Semaphorin 6C expression in innervated and denervated skeletal muscle. J. Mol. Histol. 2008;39:5–13. doi: 10.1007/s10735-007-9113-6. [DOI] [PubMed] [Google Scholar]
- 17.Raz A., Carmi P., Pazerini G. Expression of two different endogenous galactoside-binding lectins sharing sequence homology. Cancer Res. 1988;48:645–649. [PubMed] [Google Scholar]
- 18.Raz A., Meromsky L., Lotan R. Differential expression of endogenous lectins on the surface of nontumorigenic, tumorigenic, and metastatic cells. Cancer Res. 1986;46:3667–3672. [PubMed] [Google Scholar]
- 19.Batt J., Bain J., Goncalves J., Michalski B., Plant P., Fahnestock M., Woodgett J. Differential gene expression profiling of short and long term denervated muscle. FASEB J. 2006;20:115–117. doi: 10.1096/fj.04-3640fje. [DOI] [PubMed] [Google Scholar]
- 20.Gajendran N., Frey J.R., Lefkovits I., Kuhn L., Fountoulakis M., Krapfenbauer K., Brenner H.R. Proteomic analysis of secreted muscle components: Search for factors involved in neuromuscular synapse formation. Proteomics. 2002;2:1601–1615. doi: 10.1002/1615-9861(200211)2:11<1601::AID-PROT1601>3.0.CO;2-N. [DOI] [PubMed] [Google Scholar]
- 21.Gonzalez de Aguilar J.-L., Niederhauser-Wiederkehr C., Halter B., De Tapia M., Di Scala F., Demougin P., Dupuis L., Primig M., Meininger V., Loeffler J.-P. Gene profiling of skeletal muscle in an amyotrophic lateral sclerosis mouse model. Physiol. Genomics. 2008;32:207–218. doi: 10.1152/physiolgenomics.00017.2007. [DOI] [PubMed] [Google Scholar]
- 22.Chan J., O’Donoghue K., Gavina M., Torrente Y., Kennea N., Mehmet H., Stewart H., Watt D.J., Morgan J.E., Fisk N.M. Galectin-1 induces skeletal muscle differentiation in human fetal mesenchymal stem cells and increases muscle regeneration. Stem Cells. 2006;24:1879–1891. doi: 10.1634/stemcells.2005-0564. [DOI] [PubMed] [Google Scholar]
- 23.Sola O.M., Martin A.W. Denervation hypertrophy and atrophy of the hemidiaphragm of the rat. Am. J. Physiol. 1953;172:324–332. doi: 10.1152/ajplegacy.1953.172.2.324. [DOI] [PubMed] [Google Scholar]
- 24.Feng T.-P., Lu D.-X. New lights on the phenomenon of transient hypertrophy in the denervated hemidiaphragm of the rat. Sci. Sin. 1965;14:1772–1784. [PubMed] [Google Scholar]
- 25.Gutmann E., Haníková M., Hájek I., Klicpera M., Syrovy I. The postdenervation hypertrophy of the diaphragm. Physiol. Bohemoslov. 1966;15:508–524. [PubMed] [Google Scholar]
- 26.Zhan W.-Z., Sieck G.C. Adaptations of diaphragm and medial gastrocnemius muscles to inactivity. J. Appl. Physiol. 1992;72:1445–1453. doi: 10.1152/jappl.1992.72.4.1445. [DOI] [PubMed] [Google Scholar]
- 27.Zhan W.-Z., Farkas G.A., Schroeder M.A., Gosselin L.E., Sieck G.C. Regional adaptations of rabbit diaphragm muscle fibers to unilateral denervation. J. Appl. Physiol. 1995;79:941–950. doi: 10.1152/jappl.1995.79.3.941. [DOI] [PubMed] [Google Scholar]
- 28.Rowley K.L., Mantilla C.B., Sieck G.C. Respiratory muscle plasticity. Respir. Physiol. Neurobiol. 2005;147:235–251. doi: 10.1016/j.resp.2005.03.003. [DOI] [PubMed] [Google Scholar]
- 29.Chang-Hong R., Wada M., Koyama S., Kimura H., Arawaka S., Kawanami T., Kurita K., Kadoya T., Aoki M., Itoyama Y., Kato T. Neuroprotective effect of oxidized galectin-1 in a transgenic mouse model of amyotrophic lateral sclerosis. Exp. Neurol. 2005;194:203–211. doi: 10.1016/j.expneurol.2005.02.011. [DOI] [PubMed] [Google Scholar]
- 30.Cho M., Cummings R.D. Galectin-1, a β-galactoside-binding lectin in chinese hamster ovary cells. J. Biol. Chem. 1995;270:5198–5206. doi: 10.1074/jbc.270.39.22895. [DOI] [PubMed] [Google Scholar]
- 31.Adams L., Scott G.K., Weinberg C.S. Biphasic modulation of cell growth by recombinant human galectin-1. Biochim. Biophys. Acta. 1996;1312:137–144. doi: 10.1016/0167-4889(96)00031-6. [DOI] [PubMed] [Google Scholar]
- 32.Vas V., Fajka-Boja R., Ion G., Dudics V., Monostori, Uher F. Biphasic effect of recombinant galectin-1 on the growth and death of early hematopoietic cells. Stem Cells. 2005;23:279–287. doi: 10.1634/stemcells.2004-0084. [DOI] [PubMed] [Google Scholar]
- 33.Miura T., Takahashi M., Horie H., Kurushima H., Tsuchimoto D., Sakumi K., Nakabeppu Y. Galectin-1β, a natural monomeric form of galectin-1 lacking its six amino-terminal residues promotes axonal regeneration but not cell death. Cell Death Differ. 2004;11:1076–1083. doi: 10.1038/sj.cdd.4401462. [DOI] [PubMed] [Google Scholar]
- 34.Hsieh S.H., Ying N.W., Wu M.H., Chiang C.L., Hsu C.L., Wong T.Y., Jin Y.T., Hong T.M., Chen Y.L. Galectin-1, a novel ligand of neuropilin-1, activates VEGFR-2 signaling and modulates the migration of vascular endothelial cells. Oncogene. 2008;27:3746–3753. doi: 10.1038/sj.onc.1211029. [DOI] [PubMed] [Google Scholar]
- 35.Pellet-Many C., Frankel P., Jia H., Zachary I. Neuropilins: structure, function and role in disease. Biochem. J. 2008;411:211–226. doi: 10.1042/BJ20071639. [DOI] [PubMed] [Google Scholar]
- 36.Moret F., Renaudot C., Bozon M., Castellani V. Semaphorin and neuropilin co-expression in motoneurons sets axon sensitivity to environmental semaphorin sources during motor axon pathfinding. Development. 2007;134:4491–4501. doi: 10.1242/dev.011452. [DOI] [PubMed] [Google Scholar]
- 37.Lambrechts D., Carmeliet P. VEGF at the neurovascular interface: Therapeutic implications for motor neuron disease. Biochim. Biophys. Acta. 2006;1762:1109–1121. doi: 10.1016/j.bbadis.2006.04.005. [DOI] [PubMed] [Google Scholar]