Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2007 Apr 25;12(4):493–508. doi: 10.2478/s11658-007-0019-9

Stilbene derivatives inhibit the activity of the inner mitochondrial membrane chloride channels

Izabela Koszela-Piotrowska 1,, Katarzyna Choma 1,2, Piotr Bednarczyk 1,2, Krzysztof Dołowy 2, Adam Szewczyk 1, Wolfram S Kunz 3, Lubica Malekova 4, Viera Kominkova 4, Karol Ondrias 4
PMCID: PMC6275615  PMID: 17457523

Abstract

Ion channels selective for chloride ions are present in all biological membranes, where they regulate the cell volume or membrane potential. Various chloride channels from mitochondrial membranes have been described in recent years. The aim of our study was to characterize the effect of stilbene derivatives on single-chloride channel activity in the inner mitochondrial membrane. The measurements were performed after the reconstitution into a planar lipid bilayer of the inner mitochondrial membranes from rat skeletal muscle (SMM), rat brain (BM) and heart (HM) mitochondria. After incorporation in a symmetric 450/450 mM KCl solution (cis/trans), the chloride channels were recorded with a mean conductance of 155 ± 5 pS (rat skeletal muscle) and 120 ± 16 pS (rat brain). The conductances of the chloride channels from the rat heart mitochondria in 250/50 mM KCl (cis/trans) gradient solutions were within the 70–130 pS range. The chloride channels were inhibited by these two stilbene derivatives: 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS) and 4-acetamido-4′-isothiocyanostilbene-2,2′-disulfonic acid (SITS). The skeletal muscle mitochondrial chloride channel was blocked after the addition of 1 mM DIDS or SITS, whereas the brain mitochondrial channel was blocked by 300 μM DIDS or SITS. The chloride channel from the rat heart mitochondria was inhibited by 50–100 μM DIDS. The inhibitory effect of DIDS was irreversible. Our results confirm the presence of chloride channels sensitive to stilbene derivatives in the inner mitochondrial membrane from rat skeletal muscle, brain and heart cells.

Keywords: Mitochondria, Chloride channel, Stilbene derivatives, Black lipid membrane

Full Text

The Full Text of this article is available as a PDF (714.1 KB).

Abbreviations used

BLM

black lipid membrane

BM

brain mitochondria

CLICs

chloride intracellular channels

DIDS

4,4′-diisothiocyanostilbene-2,2′-disulfonic acid

DTNB

6,6′-dinitro-3,3′-dithiodibenzoic acid

HM

heart mitochondria

ITS

4-acetamido-4-isothiocyanostilbene-2,2′-disulfonic acid

IMAC

mitochondrial inner membrane anion channel

SITS

4-acetamido-4-isothiocyanostilbene-2,2′-disulfonic acid

SMM

skeletal muscle mitochondria

SMP

submitochondrial particles

TNFα

tumor necrosis factor α

UPCs

uncoupling proteins

References

  • 1.Szewczyk A., Skalska J., Glab M., Kulawiak B., Malinska D., Koszela-Piotrowska I., Kunz W.S. Mitochondrial potassium channels: From pharmacology to function. Biochim. Biophys. Acta. 2006;1757:715–720. doi: 10.1016/j.bbabio.2006.05.002. [DOI] [PubMed] [Google Scholar]
  • 2.Wang X., Takahashi N., Uramoto H., Okada Y. Chloride channel inhibition prevents ROS-dependent apoptosis induced by ischemiareperfusion in mouse cardiomyocytes. Cell. Physiol. Biochem. 2005;16:147–154. doi: 10.1159/000089840. [DOI] [PubMed] [Google Scholar]
  • 3.Beavis A.D., Garlid K.D. The mitochondrial inner membrane anion channel. Regulation by divalent cations and protons. J. Biol. Chem. 1987;262:15085–15093. [PubMed] [Google Scholar]
  • 4.Beavis A.D. Properties of the inner membrane anion channel in intact mitochondria. J. Bioenerg. Biomembr. 1992;24:77–90. doi: 10.1007/BF00769534. [DOI] [PubMed] [Google Scholar]
  • 5.Schönfeld P., Sayeed I., Bohnensack R., Siemen D. Fatty acids induce chloride permeation in rat liver mitochondria by activation of the inner membrane anion channel (IMAC) J. Bioenerg. Biomembr. 2004;36:241–248. doi: 10.1023/B:JOBB.0000031975.72350.c6. [DOI] [PubMed] [Google Scholar]
  • 6.Sorgato M.C., Keller B.U., Stuhmer W. Patch-clamping of the inner mitochondrial membrane reveals a voltage-dependent ion channel. Nature. 1987;330:498–500. doi: 10.1038/330498a0. [DOI] [PubMed] [Google Scholar]
  • 7.Sorgato M.C., Moran O., De Pinto V., Keller B.U., Stuehmer W. Further investigation on the high-conductance ion channel of the inner membrane of mitochondria. J. Bioenerg. Biomembr. 1989;21:485–496. doi: 10.1007/BF00762520. [DOI] [PubMed] [Google Scholar]
  • 8.Moran O., Sandri G., Panfili E., Stuhmer W., Sorgato M.C. Electrophysiological characterization of contact sites in brain mitochondria. J. Biol. Chem. 1990;265:908–913. [PubMed] [Google Scholar]
  • 9.Klitsch T., Siemen D. Inner mitochondrial membrane anion channel is present in brown adipocytes but is not identical with the uncoupling protein. J. Membr. Biol. 1991;122:69–75. doi: 10.1007/BF01872740. [DOI] [PubMed] [Google Scholar]
  • 10.Borecky J., Jezek P., Siemen D. 108-pS channel in brown fat mitochondria might be identical to the inner membrane anion channel. J. Biol. Chem. 1997;272:19282–19289. [PubMed] [Google Scholar]
  • 11.Hayman K.A., Spurway T.D., Ashley R.H. Single anion channels reconstituted from cardiac mitoplasts. J. Membrane Biol. 1993;136:181–190. doi: 10.1007/BF02505762. [DOI] [PubMed] [Google Scholar]
  • 12.Fernandez-Salas E., Sagar M., Cheng C., Yuspa S.H., Weinberg W.C. p53 and tumor necrosis factor alpha regulate the expression of a mitochondrial chloride channel protein. J. Biol. Chem. 1999;274:36488–36497. doi: 10.1074/jbc.274.51.36488. [DOI] [PubMed] [Google Scholar]
  • 13.Landry D., Sullivan S., Nicolaides M., Redhead C., Edelman A., Field M., al-Awqati Q., Edwards J. Molecular cloning and characterization of p64, a chloride channel protein from kidney microsomes. J. Biol. Chem. 1993;268:14948–14955. [PubMed] [Google Scholar]
  • 14.Tonini R., Ferroni A., Valenzuela S.M., Warton K., Campbell T.J., Breit S.N., Mazzanti M. Functional characterization of the NCC27 nuclear protein in stable transfected CHO-K1 cells. FASEB J. 2000;14:1171–1178. doi: 10.1096/fasebj.14.9.1171. [DOI] [PubMed] [Google Scholar]
  • 15.Dulhunty A.F., Pouliquin P., Coggan M., Gage P.W., Board P.G. A recently identified member of the glutathione transferase structural family modifies cardiac RyR2 substate activity, coupled gating and activation by Ca2+ and ATP. Biochem. J. 2005;390:333–343. doi: 10.1042/BJ20042113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Qian Z., Okuhara D., Abe M.K., Rosner M.R. Molecular cloning and characterization of a mitogen-activated protein kinase-associated intracellular chloride channel. J. Biol. Chem. 1999;274:1621–1627. doi: 10.1074/jbc.274.3.1621. [DOI] [PubMed] [Google Scholar]
  • 17.Berryman M., Bruno J., Price J., Edwards J.C. CLIC-5A functions as a chloride channel in vitro and associates with the cortical actin cytoskeleton in vitro and in vivo. J. Biol. Chem. 2004;279:34794–34801. doi: 10.1074/jbc.M402835200. [DOI] [PubMed] [Google Scholar]
  • 18.Friedli M., Guipponi M., Bertrand S., Bertrand D., Neerman-Arbez M., Scott H.S., Antonarakis S.E., Reymond A. Identification of a novel member of the CLIC family, CLIC6, mapping to 21q22.12. Gene. 2003;320:31–40. doi: 10.1016/S0378-1119(03)00830-8. [DOI] [PubMed] [Google Scholar]
  • 19.Mizukawa Y., Nishizawa T., Nagao T., Kitamura K., Urushidani T. Cellular distribution of parchorin, a chloride intracellular channel-related protein, in various tissues. Am. J. Physiol. Cell Physiol. 2002;282:C786–795. doi: 10.1152/ajpcell.00239.2001. [DOI] [PubMed] [Google Scholar]
  • 20.Suh K.S., Mutoh M., Gerdes M., Yuspa S.H. CLIC4, an intracellular chloride channel protein, is a novel molecular target for cancer therapy. J. Investig. Dermatol. Symp. Proc. 2005;10:105–109. doi: 10.1111/j.1087-0024.2005.200402.x. [DOI] [PubMed] [Google Scholar]
  • 21.Fernandez-Salas E., Suh K.S., Speransky V.V., Bowers W.L., Levy J.M., Adams T., Pathak K.R., Edwards L.E., Hayes D.D., Cheng C., Steven A.C., Weinberg W.C., Yuspa S.H. mtCLIC/CLIC4, an organellular chloride channel protein, is increased by DNA damage and participates in the apoptotic response to p53. Mol. Cell Biol. 2002;22:3610–3620. doi: 10.1128/MCB.22.11.3610-3620.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Suh K.S., Mutoh M., Nagashima K., Fernandez-Salas E., Edwards L.E., Hayes D.D., Crutchley J.M., Marin K.G., Dumont R.A., Levy J.M., Cheng C., Garfield S., Yuspa S.H. The organellular chloride channel protein CLIC4/mtCLIC translocates to the nucleus in response to cellular stress and accelerates apoptosis. J. Biol. Chem. 2004;279:4632–4641. doi: 10.1074/jbc.M311632200. [DOI] [PubMed] [Google Scholar]
  • 23.Singh H., Ashley R.H. CLIC4 (p64H1) and its putative transmembrane domain form poorly selective, redox-regulated ion channels. Mol. Membr. Biol. 2007;24:41–52. doi: 10.1080/09687860600927907. [DOI] [PubMed] [Google Scholar]
  • 24.Wiśniewski E., Kunz W.S., Gellerich F.N. Phosphate affects the distribution of flux control among the enzymes of oxidative phosphorylation in rat skeletal muscle mitochondria. J. Biol. Chem. 1993;268:9343–9346. [PubMed] [Google Scholar]
  • 25.Dębska G., Kicińska A., Skalska J., Szewczyk A., May R., Elger C.E., Kunz W.S. Opening of potassium channels modulates mitochondrial function in rat skeletal muscle. Biochim. Biophys. Acta. 2002;1556:97–105. doi: 10.1016/S0005-2728(02)00340-7. [DOI] [PubMed] [Google Scholar]
  • 26.Kudin A., Bimpong-Buta N.Y., Vielhaber S., Elger C.E., Kunz W.S. Characterization of superoxide-producing sites in isolated brain mitochondria. J. Biol. Chem. 2004;279:4127–4135. doi: 10.1074/jbc.M310341200. [DOI] [PubMed] [Google Scholar]
  • 27.Cino M., Del Maestro R.F. Generation of hydrogen peroxide by brain mitochondria: the effect of reoxygenation following postdecapitative ischemia. Arch. Biochem. Biophys. 1989;269:623–638. doi: 10.1016/0003-9861(89)90148-3. [DOI] [PubMed] [Google Scholar]
  • 28.Holmuhamedov E.L., Wang L., Terzic A. ATP-sensitive K+ channel openers prevent Ca2+ overload in rat cardiac mitochondria. J. Physiol. 1999;519:347–360. doi: 10.1111/j.1469-7793.1999.0347m.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Malekova L., Kominkova A., Ferko M., Stefanik P., Krizanova O., Ziegelhöffer A., Szewczyk A., Ondrias K. Bongkrekic acid and atractyloside inhibits chloride channels from mitochondrial membranes of rat heart. Biochim. Biophys. Acta. 2007;1767:31–44. doi: 10.1016/j.bbabio.2006.10.004. [DOI] [PubMed] [Google Scholar]
  • 30.Bednarczyk P., Kicińska A., Kominkova V., Ondrias K., Dołowy K., Szewczyk A. Quinine inhibits mitochondrial ATP-regulated potassium channel from bovine heart. J. Membr. Biol. 2004;199:63–72. doi: 10.1007/s00232-004-0676-9. [DOI] [PubMed] [Google Scholar]
  • 31.Bednarczyk P., Dołowy K., Szewczyk A. Matrix Mg2+ regulates mitochondrial ATP-dependent potassium channel from heart. FEBS Lett. 2005;579:1625–1632. doi: 10.1016/j.febslet.2005.01.077. [DOI] [PubMed] [Google Scholar]
  • 32.Kulawiak B., Bednarczyk P. Reconstitution of brain mitochondria inner membrane into planar lipid bilayer Acta Neurobiol. Exp. (Wars) 2005;65:271–276. doi: 10.55782/ane-2005-1562. [DOI] [PubMed] [Google Scholar]
  • 33.Hordejuk R., Szewczyk A., Dołowy K. The heterogeneity of ion channels in chromaffin granule membranes. Cell. Mol. Biol. Lett. 2006;11:312–325. doi: 10.2478/s11658-006-0027-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Cabantchik Z.I., Greger R. Chemical probes for anion transporters of mammalian cell membranes. Am. J. Physiol. 1992;262:803–827. doi: 10.1152/ajpcell.1992.262.4.C803. [DOI] [PubMed] [Google Scholar]
  • 35.Jentsch T.J., Stein V., Weinreich F., Zdebik A.A. Molecular structure and physiological function of chloride channels. Physiol. Rev. 2002;82:503–568. doi: 10.1152/physrev.00029.2001. [DOI] [PubMed] [Google Scholar]
  • 36.Beavis A.D., Davatol-Hag H. The mitochondrial inner membrane anion channel is inhibited by DIDS. J. Bioenerg. Biomembr. 1996;28:207–214. doi: 10.1007/BF02110652. [DOI] [PubMed] [Google Scholar]
  • 37.Huang S.G., Klingenberg M. Chloride channel properties of the uncoupling protein from brown adipose tissue mitochondria: a patch-clamp study. Biochemistry. 1996;35:16806–16814. doi: 10.1021/bi960989v. [DOI] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES