Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2007 Oct 19;13(1):49–57. doi: 10.2478/s11658-007-0034-x

Activation of the intrinsic and extrinsic pathways in high pressure-induced apoptosis of murine erythroleukemia cells

Takeo Yamaguchi 1,, Kenji Hashiguchi 1, Satoshi Katsuki 1, Wakako Iwamoto 1, Shoichiro Tsuruhara 1, Shigeyuki Terada 1
PMCID: PMC6275616  PMID: 17952376

Abstract

We previously demonstrated that caspase-3, an executioner of apoptosis, is activated in the pressure-induced apoptosis of murine erythroleukemia (MEL) cells (at 100 MPa). Here, we examined the pathway of caspase-3 activation using peptide substrates and caspase inhibitors. Using the substrates of caspases-8 and -9, it was found that both are activated in cells under high pressure. The production of nuclei with sub-G1 DNA content in 100 MPa-treated MEL cells was suppressed by inhibitors of caspases-8 and -9, and pan-caspase. In 100 MPa-treated cells, pan-caspase inhibitor partially prevented the cytochrome c release from the mitochondria and the breakdown of mitochondrial membrane potential. These results suggest that the intrinsic and extrinsic pathways are activated in apoptotic signaling during the high pressure-induced death of MEL cells.

Key words: Apoptosis, Caspases, Cytochrome c, Flow cytometry, Membrane potential, High pressure

Full Text

The Full Text of this article is available as a PDF (465.7 KB).

Abbreviations used

Ac-IETD-MCA

acetyl-IIe-Glu-Thr-Asp-4-methylcoumaryl-7-amide

Ac-LEHD-CHO

acetyl-Leu-Glu-His-Asp-aldehyde

Ac-LEHD-MCA

acetyl-Leu-Glu-His-Asp-4-methylcoumaryl-7-amide

CAD

caspase-activated deoxyribo-nuclease

DTT

dithiothreitol

HEPES

4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid

MEL

murine erythroleukemia

NP-40

nonidet P-40

PBS

phosphate-buffered saline

PI

propidium iodide

PMSF

phenylmethanesulfonyl fluoride

RNase A

ribonuclease A

ROS

reactive oxygen species

UV

ultraviolet

z-IETD-fmk

benzyloxycarbonyl-Ile-Glu(OMe)-Thr-Asp(OMe)-fluoromethyl ketone

z-VAD-fmk

benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethyl ketone

References

  • 1.Okada H., Mak T.W. Pathways of apoptotic and non-apoptotic death in tumour cells. Nature Rev. Cancer. 2004;4:592–603. doi: 10.1038/nrc1412. [DOI] [PubMed] [Google Scholar]
  • 2.Berghe T.V., van Loo G., Saelens X., van Gurp M., Brouckaert G., Kalai M., Declercq W., Vandenabeele P. Differential signaling to apoptotic and necrotic cell death by Fas-associated death domain protein FADD. J. Biol. Chem. 2004;279:7925–7933. doi: 10.1074/jbc.M307807200. [DOI] [PubMed] [Google Scholar]
  • 3.Majno G., Joris I. Apoptosis, oncosis, and necrosis: an overview of cell death. Am. J. Pathol. 1995;146:3–15. [PMC free article] [PubMed] [Google Scholar]
  • 4.Green D.R. Apoptotic pathways: paper wraps stone blunts scissors. Cell. 2000;102:1–4. doi: 10.1016/s0092-8674(00)00003-9. [DOI] [PubMed] [Google Scholar]
  • 5.Scoltock A.B., Cidlowski J.A. Activation of intrinsic and extrinsic pathways in apoptotic signaling during UV-C-induced death of Jurkat cells: the role of caspase inhibition. Exp. Cell Res. 2004;297:212–223. doi: 10.1016/j.yexcr.2004.03.025. [DOI] [PubMed] [Google Scholar]
  • 6.Rudner J., Lepple-Wienhues A., Budach W., Berschauer J., Friedrich B., Wesselborg S., Schulze-Osthoff K., Belka C. Wild-type, mitochondrial and ER-restricted Bcl-2 inhibit DNA damage-induced apoptosis but do not affect death receptor-induced apoptosis. J. Cell Sci. 2001;114:4164–4172. doi: 10.1242/jcs.114.23.4161. [DOI] [PubMed] [Google Scholar]
  • 7.Matsuzawa A., Ichijo H. Molecular mechanisms of the decision between life and death: regulation of apoptosis by apoptosis signal-regulating kinase 1. J. Biochem. 2001;130:1–8. doi: 10.1093/oxfordjournals.jbchem.a002947. [DOI] [PubMed] [Google Scholar]
  • 8.Schuler M., Bossy-Wetzel E., Goldstein J.C., Fitzgerald P., Green D.R. p53 induces apoptosis by caspase activation through mitochondrial cytochrome c release. J. Biol. Chem. 2000;275:7337–7342. doi: 10.1074/jbc.275.10.7337. [DOI] [PubMed] [Google Scholar]
  • 9.Rosse T., Olivier R., Monney L., Rager M., Conus S., Fellay I., Jansen B., Borner C. Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c. Nature. 1998;391:496–499. doi: 10.1038/35160. [DOI] [PubMed] [Google Scholar]
  • 10.Adams J. M., Cory S. Life-or-death decisions by the Bcl-2 protein family. Trends Biochem. Sci. 2001;26:61–66. doi: 10.1016/s0968-0004(00)01740-0. [DOI] [PubMed] [Google Scholar]
  • 11.Take J., Yamaguchi T., Mine N., Terada S. Caspase activation in high-pressure-induced apoptosis of murine erythroleukemia cells. Jpn. J. Physiol. 2001;51:193–199. doi: 10.2170/jjphysiol.51.193. [DOI] [PubMed] [Google Scholar]
  • 12.Takano K.J., Takano T., Yamanouchi Y., Satou T. Pressure-induced apoptosis in human lymphoblasts. Exp. Cell Res. 1997;235:155–160. doi: 10.1006/excr.1997.3666. [DOI] [PubMed] [Google Scholar]
  • 13.Matsumoto M., Yamaguchi T., Fukumaki Y., Yasunaga R., Terada S. High pressure induces G2 arrest in murine erythroleukemia cells. J. Biochem. 1998;123:87–93. doi: 10.1093/oxfordjournals.jbchem.a021920. [DOI] [PubMed] [Google Scholar]
  • 14.Luo X., Budihardjo I., Zou H., Slaughter C., Wang X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell. 1998;94:481–490. doi: 10.1016/s0092-8674(00)81589-5. [DOI] [PubMed] [Google Scholar]
  • 15.Sohn D., Schulze-Osthoff K., Janicke R.U. Caspase-8 can be activated by interchain proteolysis without receptor-triggered dimerization during drug-induced apoptosis. J. Biol. Chem. 2005;280:5267–5273. doi: 10.1074/jbc.M408585200. [DOI] [PubMed] [Google Scholar]
  • 16.Enari M., Sakahira H., Yokoyama H., Okawa K., Iwamatsu A., Nagata S. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature. 1998;391:43–50. doi: 10.1038/34112. [DOI] [PubMed] [Google Scholar]
  • 17.Hassepass I., Voit R., Hoffmann I. Phosphorylation at serine 75 is required for UV-mediated degradation of human Cdc 25A phosphatase at the S-phase checkpoint. J. Biol. Chem. 2003;278:29824–29829. doi: 10.1074/jbc.M302704200. [DOI] [PubMed] [Google Scholar]
  • 18.Lee J.-H., Paull T.T. Direct activation of the ATM protein kinase by the Mre11/Rad 50/Nbs1 complex. Science. 2004;304:93–96. doi: 10.1126/science.1091496. [DOI] [PubMed] [Google Scholar]
  • 19.Ward I. M., Minn K., Chen J. UV-induced ataxia-telangiectasia-mutated and Rad3-related (ATR) activation requires replication stress. J. Biol. Chem. 2004;279:9677–9680. doi: 10.1074/jbc.C300554200. [DOI] [PubMed] [Google Scholar]
  • 20.Takahashi H., Yamaguchi T., Koga M., Kageura H., Terada S. DNA replication reaction in Xenopus cell-free system is suppressed by high pressure. Cell. Mol. Biol. Lett. 2004;9:423–427. [PubMed] [Google Scholar]
  • 21.Weber G., Drickamer H.G. The effect of high pressure upon proteins and other biomolecules. Q. Rev. Biophys. 1983;16:89–112. doi: 10.1017/s0033583500004935. [DOI] [PubMed] [Google Scholar]
  • 22.Aertsen A., DeSpiegeleer P., Vanoirbeek K., Lavilla M., Michiels C.W. Induction of oxidative stress by high hydrostatic pressure in Escherichia coli. Appl. Environ. Microbiol. 2005;71:2226–2231. doi: 10.1128/AEM.71.5.2226-2231.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES