Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2012 May 29;17(3):422–432. doi: 10.2478/s11658-012-0020-9

SHP-2 and PTP-pest induction during Rb-E2F associated apoptosis

Liza D Morales 1,3, Karina Pena 1, Dae Joon Kim 2,3, Jonathan H Lieman 1,
PMCID: PMC6275625  PMID: 22644489

Abstract

Apoptosis is intimately connected to cell cycle regulation via the Retinoblastoma (Rb)-E2F pathway and thereby serves an essential role in tumor suppression by eliminating aberrant hyperproliferative cells. Upon loss of Rb activity, an apoptotic response can be elicited through both p53-dependent and p53-independent mechanisms. While much of this apoptotic response has been attributed to the p19ARF/p53 pathway, increasing evidence has supported the role of protein tyrosine phosphatases (PTPs) in contributing to the initiation of the Rb-E2F-associated apoptotic response. One protein tyrosine phosphatase, PTP-1B, which is induced by the Rb-E2F pathway, has been shown to contribute to a p53-independent apoptotic pathway by inactivating focal adhesion kinase. This report identifies two additional PTPs, SHP-2 and PTP-PEST, that are also directly activated by the Rb-E2F pathway and which can contribute to signal transduction during p53-independent apoptosis.

Key words: Apoptosis, Focal adhesion kinase, Rb, E2F-1, Phosphatase, PTP-1B, SHP-2, PTP-PEST, PTPN1, PTPN11, PTPN12, Tumor suppressor

Full Text

The Full Text of this article is available as a PDF (361.7 KB).

Abbreviations used

4OHT

4-hydroxytamoxifen

dnE2F

dominant negative mutant of E2F-1

ER

estrogen receptor

FAK

focal adhesion kinase

PTP

protein tyrosine phosphatase

PTP-PEST

protein tyrosine phosphatase rich in proline, glutamic acid/aspartic acid, and serine/threonine residues

Rb

retinoblastoma protein

SHP-2

SH2 domain-containing tyrosine phosphatase

References

  • 1.Ghavami S., Hashemi M., Ande S.R., Yeganeh B., Xiao W., Eshraghi M., Bus C.J., Kadkhoda K., Wiechec E., Halayko A.J., Los M. Apoptosis and cancer: mutations within caspase genes. J. Med. Genet. 2009;46:497–510. doi: 10.1136/jmg.2009.066944. [DOI] [PubMed] [Google Scholar]
  • 2.Hanahan D., Weinberg R.A. The hallmarks of cancer. Cell. 2000;100:57–70. doi: 10.1016/s0092-8674(00)81683-9. [DOI] [PubMed] [Google Scholar]
  • 3.Lazzerini Denchi E., Helin K. E2F1 is crucial for E2F-dependent apoptosis. EMBO Rep. 2005;6:661–668. doi: 10.1038/sj.embor.7400452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Nahle Z., Polakoff J., Davuluri R.V., McCurrach M.E., Jacobson M.D., Narita M., Zhang M.Q., Lazebnik Y., Bar-Sagi D., Lowe S.W. Direct coupling of the cell cycle and cell death machinery by E2F. Nat. Cell Biol. 2002;4:859–864. doi: 10.1038/ncb868. [DOI] [PubMed] [Google Scholar]
  • 5.Putzer B.M. E2F1 death pathways as targets for cancer therapy. J. Cell. Mol. Med. 2007;11:239–251. doi: 10.1111/j.1582-4934.2007.00030.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Stevens C., La Thangue N.B. E2F and cell cycle control: a double-edged sword. Arch. Biochem. Biophys. 2003;412:157–169. doi: 10.1016/s0003-9861(03)00054-7. [DOI] [PubMed] [Google Scholar]
  • 7.Hallstrom T.C., Nevins J.R. Balancing the decision of cell proliferation and cell fate. Cell Cycle. 2009;8:532–535. doi: 10.4161/cc.8.4.7609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Black E.P., Hallstrom T., Dressman H.K., West M., Nevins J.R. Distinctions in the specificity of E2F function revealed by gene expression signatures. Proc. Natl. Acad. Sci. U. S. A. 2005;102:15948–15953. doi: 10.1073/pnas.0504300102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Wu Z., Zheng S., Yu Q. The E2F family and the role of E2F1 in apoptosis. Int. J. Biochem. Cell Biol. 2009;41:2389–2397. doi: 10.1016/j.biocel.2009.06.004. [DOI] [PubMed] [Google Scholar]
  • 10.Luo R.X., Postigo A.A., Dean D.C. Rb interacts with histone deacetylase to repress transcription. Cell. 1998;92:463–473. doi: 10.1016/s0092-8674(00)80940-x. [DOI] [PubMed] [Google Scholar]
  • 11.Lieman J.H., Worley L.A., Harbour J.W. Loss of Rb-E2F repression results in caspase-8-mediated apoptosis through inactivation of focal adhesion kinase. J. Biol. Chem. 2005;280:10484–10490. doi: 10.1074/jbc.M409371200. [DOI] [PubMed] [Google Scholar]
  • 12.Young A.P., Nagarajan R., Longmore G.D. Mechanisms of transcriptional regulation by Rb-E2F segregate by biological pathway. Oncogene. 2003;22:7209–7217. doi: 10.1038/sj.onc.1206804. [DOI] [PubMed] [Google Scholar]
  • 13.Parsons J.T. Focal adhesion kinase: the first ten years. J. Cell Sci. 2003;116:1409–1416. doi: 10.1242/jcs.00373. [DOI] [PubMed] [Google Scholar]
  • 14.Golubovskaya V.M., Finch R., Cance W.G. Direct interaction of the N-terminal domain of focal adhesion kinase with the N-terminal transactivation domain of p53. J. Biol. Chem. 2005;280:25008–25021. doi: 10.1074/jbc.M414172200. [DOI] [PubMed] [Google Scholar]
  • 15.Zouq N.K., Keeble J.A., Lindsay J., Valentijn A.J., Zhang L., Mills D., Turner C.E., Streuli C.H., Gilmore A.P. FAK engages multiple pathways to maintain survival of fibroblasts and epithelia: differential roles for paxillin and p130Cas. J. Cell Sci. 2009;122:357–367. doi: 10.1242/jcs.030478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Attwell S., Roskelley C., Dedhar S. The integrin-linked kinase (ILK) suppresses anoikis. Oncogene. 2000;19:3811–3815. doi: 10.1038/sj.onc.1203711. [DOI] [PubMed] [Google Scholar]
  • 17.van Nimwegen M.J., van de Water B. Focal adhesion kinase: a potential target in cancer therapy. Biochem. Pharmacol. 2007;73:597–609. doi: 10.1016/j.bcp.2006.08.011. [DOI] [PubMed] [Google Scholar]
  • 18.Halle M., Tremblay M.L., Meng T.C. Protein tyrosine phosphatases: emerging regulators of apoptosis. Cell Cycle. 2007;6:2773–2781. doi: 10.4161/cc.6.22.4926. [DOI] [PubMed] [Google Scholar]
  • 19.Halle M., Liu Y.C., Hardy S., Theberge J.F., Blanchetot C., Bourdeau A., Meng T.C., Tremblay M.L. Caspase-3 regulates catalytic activity and scaffolding functions of the protein tyrosine phosphatase PEST, a novel modulator of the apoptotic response. Mol. Cell Biol. 2007;27:1172–1190. doi: 10.1128/MCB.02462-05. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Marin T.M., Clemente C.F., Santos A.M., Picardi P.K., Pascoal V.D., Lopes-Cendes I., Saad M.J., Franchini K.G. Shp2 negatively regulates growth in cardiomyocytes by controlling focal adhesion kinase/Src and mTOR pathways. Circ. Res. 2008;103:813–824. doi: 10.1161/CIRCRESAHA.108.179754. [DOI] [PubMed] [Google Scholar]
  • 21.Ostman A., Hellberg C., Bohmer F.D. Protein-tyrosine phosphatases and cancer. Na.t Rev. Cancer. 2006;6:307–320. doi: 10.1038/nrc1837. [DOI] [PubMed] [Google Scholar]
  • 22.Shen Y., Schneider G., Cloutier J.F., Veillette A., Schaller M.D. Direct association of protein-tyrosine phosphatase PTP-PEST with paxillin. J. Biol. Chem. 1998;273:6474–6481. doi: 10.1074/jbc.273.11.6474. [DOI] [PubMed] [Google Scholar]
  • 23.Yu D.H., Qu C.K., Henegariu O., Lu X., Feng G.S. Protein-tyrosine phosphatase Shp-2 regulates cell spreading, migration, and focal adhesion. J. Biol. Chem. 1998;273:21125–21131. doi: 10.1074/jbc.273.33.21125. [DOI] [PubMed] [Google Scholar]
  • 24.Rafiq K., Kolpakov M.A., Abdelfettah M., Streblow D.N., Hassid A., Dell’Italia L.J., Sabri A. Role of protein-tyrosine phosphatase SHP2 in focal adhesion kinase down-regulation during neutrophil cathepsin G-induced cardiomyocytes anoikis. J. Biol. Chem. 2006;281:19781–19792. doi: 10.1074/jbc.M513040200. [DOI] [PubMed] [Google Scholar]
  • 25.Julien S.G., Dube N., Hardy S., Tremblay M.L. Inside the human cancer tyrosine phosphatome. Nat. Rev. Cancer. 2011;11:35–49. doi: 10.1038/nrc2980. [DOI] [PubMed] [Google Scholar]
  • 26.Ma D., Zhou P., Harbour J.W. Distinct mechanisms for regulating the tumor suppressor and antiapoptotic functions of Rb. J. Biol. Chem. 2003;278:19358–19366. doi: 10.1074/jbc.M301761200. [DOI] [PubMed] [Google Scholar]
  • 27.Bentires-Alj M., Paez J.G., David F.S., Keilhack H., Halmos B., Naoki K., Maris J.M., Richardson A., Bardelli A., Sugarbaker D.J., Richards W.G., Du J., Girard L., Minna J.D., Loh M.L., Fisher D.E., Velculescu V.E., Vogelstein B., Meyerson M., Sellers W.R., Neel B.G. Activating mutations of the noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia. Cancer Res. 2004;64:8816–8820. doi: 10.1158/0008-5472.CAN-04-1923. [DOI] [PubMed] [Google Scholar]
  • 28.Mohi M.G., Neel B.G. The role of Shp2 (PTPN11) in cancer. Curr. Opin. Genet. Dev. 2007;17:23–30. doi: 10.1016/j.gde.2006.12.011. [DOI] [PubMed] [Google Scholar]
  • 29.Angers-Loustau A., Cote J.F., Tremblay M.L. Roles of protein tyrosine phosphatases in cell migration and adhesion. Biochem. Cell Biol. 1999;77:493–505. [PubMed] [Google Scholar]
  • 30.Zheng Y., Yang W., Xia Y., Hawke D., Liu D.X., Lu Z. Ras-induced and extracellular signal-regulated kinase 1 and 2 phosphorylation-dependent isomerization of protein tyrosine phosphatase (PTP)-PEST by PIN1 promotes FAK dephosphorylation by PTP-PEST. Mol. Cell Biol. 2011;31:4258–4269. doi: 10.1128/MCB.05547-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Thompson L.J., Jiang J., Madamanchi N., Runge M.S., Patterson C. PTP-epsilon, a tyrosine phosphatase expressed in endothelium, negatively regulates endothelial cell proliferation. Am. J. Physiol. Heart Circ. Physiol. 2001;281:H396–403. doi: 10.1152/ajpheart.2001.281.1.H396. [DOI] [PubMed] [Google Scholar]
  • 32.Jiang Z.X., Zhang Z.Y. Targeting PTPs with small molecule inhibitors in cancer treatment. Cancer Metastasis Rev. 2008;27:263–272. doi: 10.1007/s10555-008-9113-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Lessard L., Stuible M., Tremblay M.L. The two faces of PTP1B in cancer. Biochim. Biophys. Acta. 2010;1804:613–619. doi: 10.1016/j.bbapap.2009.09.018. [DOI] [PubMed] [Google Scholar]
  • 34.Hubbard S.R., Miller W.T. Receptor tyrosine kinases: mechanisms of activation and signaling. Curr. Opin. Cell Biol. 2007;19:117–123. doi: 10.1016/j.ceb.2007.02.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Lemmon M.A., Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2010;141:1117–1134. doi: 10.1016/j.cell.2010.06.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Hunter T. Tyrosine phosphorylation: thirty years and counting. Curr. Opin. Cell Biol. 2009;21:140–146. doi: 10.1016/j.ceb.2009.01.028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Tonks N.K. Protein tyrosine phosphatases: from genes, to function, to disease. Nat. Rev. Mol. Cell Biol. 2006;7:833–846. doi: 10.1038/nrm2039. [DOI] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES