Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2014 Jan 10;19(1):65–76. doi: 10.2478/s11658-013-0114-z

Decreasing the thresholds for electroporation by sensitizing cells with local cationic anesthetics and substances that decrease the surface negative electric charge

Maciej Grys 1, Zbigniew Madeja 1,, Włodzimierz Korohoda 1,
PMCID: PMC6275628  PMID: 24415057

Abstract

The recently described method of cell electroporation by flow of cell suspension through localized direct current electric fields (dcEFs) was applied to identify non-toxic substances that could sensitize cells to external electric fields. We found that local cationic anesthetics such as procaine, lidocaine and tetracaine greatly facilitated the electroporation of AT2 rat prostate carcinoma cells and human skin fibroblasts (HSF). This manifested as a 50% reduction in the strength of the electric field required to induce cell death by irreversible electroporation or to introduce fluorescent dyes such as calcein, carboxyfluorescein or Lucifer yellow into the cells. A similar decrease in the electric field thresholds for irreversible and reversible cell electroporation was observed when the cells were exposed to the electric field in the presence of the non-toxic cationic dyes 9-aminoacridine (9-AAA) or toluidine blue. Identifying non-toxic, reversibly acting cell sensitizers may facilitate cancer tissue ablation and help introduce therapeutic or diagnostic substances into the cells and tissues.

Key words: Selective sensitization of cells, Local cationic anesthetics, Cationic dyes, Irreversible electroporation, Reversible electroporation, Loading with fluorescent dyes, Cell viability, Flow through an electric field, Direct current electric field, Focused electric field

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Abbreviations used

9-AAA

9-aminoacridine

dcEF

direct current electric field

EthBr2

ethidium bromide

FBS

fetal bovine serum

FDA

fluorescein diacetate

HSF

human skin fibroblasts

IRE

irreversible electroporation

PBS

phosphate buffered saline with or without calcium and magnesium ions

RE

reversible electroporation

Contributor Information

Zbigniew Madeja, Phone: + 48 12 664 61 42, Email: z.madeja@uj.edu.pl.

Włodzimierz Korohoda, Phone: + 48 12 664 61 25, FAX: +48 12 664 69 02, Email: w.korohoda@uj.edu.pl.

References

  • 1.Chang DC, Chassy BM, Saunders JA, Sowers AE. Guide to Electroporation and Electrofusion. San Diego: Academic Press Inc.; 1992. [Google Scholar]
  • 2.Li S, editor. Electroporation Protocols. Preclinical, and Clinical Gene Medicine. Totowa, New Jersey: Humana Press; 2008. [Google Scholar]
  • 3.Neumann E, Schaeffer-Ridder M, Wang Y, Hofschneider PH. Gene transfer into mouse lymphoma cells by electroporation in high electric fields. EMBO J. 1982;1:841–845. doi: 10.1002/j.1460-2075.1982.tb01257.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Gissel H, Lee RC, Gehl J. Electroporation and cellular physiology. In: Kee ST, Gehl J, Lee EW, editors. Clinical Aspects of Electroporation. New York: Springer; 2011. pp. 9–17. [Google Scholar]
  • 5.Miller L, Leor J, Rubinsky B. Cancer cells ablation with irreversible electroporation. Technol. Cancer Res. Treat. 2005;4:699–705. doi: 10.1177/153303460500400615. [DOI] [PubMed] [Google Scholar]
  • 6.Rubinsky B, editor. Irreversible Electroporation. Berlin, Heidelberg: Springer-Verlag; 2010. [Google Scholar]
  • 7.Rubinsky J, Onik G, Mikus P, Rubinsky B. Optimal parameters for the destruction of prostate cancer using irreversible electroporation. J. Urol. 2008;180:2668–2674. doi: 10.1016/j.juro.2008.08.003. [DOI] [PubMed] [Google Scholar]
  • 8.Barrau C, Teissié J, Gabriel B. Osmotically induced membrane tension facilitates the triggering of living cell electropermeabilization. Bioelectrochemistry. 2004;63:327–332. doi: 10.1016/j.bioelechem.2003.11.009. [DOI] [PubMed] [Google Scholar]
  • 9.Pakhomova ON, Gregory BW, Pakhomov AG. Facilitation of electroporative drug uptake and cell killing by electrosensitization. J. Cell. Mol. Med. 2013;17:154–159. doi: 10.1111/j.1582-4934.2012.01658.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Korohoda W, Grys M, Madeja Z. Reversible and irreversible electroporation of cell suspensions flowing through a localized DC electric field. Cell. Mol. Biol. Lett. 2013;18:102–119. doi: 10.2478/s11658-012-0042-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Michalik M, Pierzchalska M, Pabiańczyk-Kulka A, Korohoda W. Procaine-induced enhancement of fluid-phase endocytosis and inhibition of exocytosis In human skin fibroblasts. Europ. J. Pharmacol. 2003;475:1–10. doi: 10.1016/S0014-2999(03)02000-4. [DOI] [PubMed] [Google Scholar]
  • 12.Pierzchalska M, Michalik M, Stepień E, Korohoda W. Changes in morphology of human skin fibroblasts induced by local anesthetics; role of actomyosin contraction. Europ. J. Pharmacol. 1998;358:235–244. doi: 10.1016/S0014-2999(98)00623-2. [DOI] [PubMed] [Google Scholar]
  • 13.Dickstein RA, Kiremidjian-Schumacher L, Stotzky G. Effect of lidocaine on production of migration inhibitory factor and on macrophage motility. In vitro exposure of Guinea pig lymphocytes and macrophages. J. Leukocyte Biol. 1984;36:621–632. doi: 10.1002/jlb.36.5.621. [DOI] [PubMed] [Google Scholar]
  • 14.Djamgoz MBA, Mycielska M, Madeja Z, Fraser SP, Korohoda W. Directional movement of rat prostate cancer cells in direct-curent electric field: involvement of voltage-gated Na+ channel activity. J. Cell Sci. 2001;114:2697–2705. doi: 10.1242/jcs.114.14.2697. [DOI] [PubMed] [Google Scholar]
  • 15.Krzysiek-Mączka G, Korohoda W. Surface anisotropy orients cell divisions in contact guided cells. Folia Biol. 2008;56:13–19. doi: 10.3409/fb56_1-2.13-19. [DOI] [PubMed] [Google Scholar]
  • 16.Karmiol S. Cell isolation and selection. In: Atala A, Lanza R, editors. Methods of Tissue Engineering. San Diego: Academic Press; 2002. pp. 19–35. [Google Scholar]
  • 17.Kemp RB, Meredith RWJ, Gamble S, Frost M. A rapid cell culture technique for assessing the toxicity of detergent-based products in vitro as a possible screen for eye irritancy in vivo. Cytobios. 1983;36:153–159. [PubMed] [Google Scholar]
  • 18.Szydłowska H, Zaporowska E, Kuszlik-Jochym K, Korohoda W, Branny J. Membranolytic activity of detergents as studied with cell viability tests. Folia Histochem. Cytochem. 1978;16:69–78. [PubMed] [Google Scholar]
  • 19.Zaporowska-Siwiak E, Michalik M, Kajstura J, Korohoda W. Density-dependent survival of Ehrlich ascites tumor cells in the presence of various substratum for energy metabolism. J. Cell Sci. 1985;77:75–85. doi: 10.1242/jcs.77.1.75. [DOI] [PubMed] [Google Scholar]
  • 20.Schlieve CR, Lieven CJ, Levin LA. Biochemical activity of reactive oxygen species scavengers do not predict retinal ganglion cell survival. Invest. Ophthal. Vis. Sci. 2006;47:3878–3886. doi: 10.1167/iovs.05-1010. [DOI] [PubMed] [Google Scholar]
  • 21.Ammar DA, Noecker RJ, Kahook MY. Effects of benzalkonium chloride-preserved, polyquad-preserved, and sofzia-preserved topical glaucoma medications on human ocular epithelial cells. Adv. Ther. 2010;27:837–845. doi: 10.1007/s12325-010-0070-1. [DOI] [PubMed] [Google Scholar]
  • 22.Ambrose EJ. Possible mechanisms of the transfer between small groups of cells. In: de Reuck AVS, Knight J, editors. Ciba Foundation Symposium Cell Differentiation. Chichester, UK: John Wiley&Sons, Ltd.; 1967. pp. 100–101. [Google Scholar]
  • 23.Chow WS, Barber J. Salt dependent changes of 9-aminoacridine fluorescence as a measure of charge densities of membrane surfaces. J. Biochem. Biophys. Methods. 1980;3:173–185. doi: 10.1016/0165-022X(80)90016-0. [DOI] [PubMed] [Google Scholar]
  • 24.Geng T, Zhan Y, Wang HY, Witting SR, Cornetta KG, Lu C. Flowthrough electroporation based on constant voltage for large-volume transfection of cells. J. Control. Rel. 2010;144:91–100. doi: 10.1016/j.jconrel.2010.01.030. [DOI] [PubMed] [Google Scholar]
  • 25.Geng T, Zhan Y, Lu C. 34th Annual International Conference of the IEEE EMBS, San Diego, California USA, 28 August–1 September. 2012. Gene delivery by microfluidic flow-through electroporation based on constant DC and AC field; pp. 2579–2582. [DOI] [PubMed] [Google Scholar]
  • 26.Giotta GJ, Chau DS, Wang HH. Binding of local anesthetics to phosphatidylcholine and phosphatidylserine liposomes. Arch. Biochem. Biophys. 1974;163:453–458. doi: 10.1016/0003-9861(74)90501-3. [DOI] [PubMed] [Google Scholar]
  • 27.Craiu A, Scadden D. Methods in Molecular Biology 22. Totowa, NJ: The Humana Press; 2008. Flow electroporation with pulsed electric fields for purging tumor cells; pp. 301–310. [DOI] [PubMed] [Google Scholar]
  • 28.Eppich HM, Foxall R, Gaynor K, Dombkowski D, Miura N, Cheng T. Pulsed electric fields for selection of hematopoietic cells and depletion of tumor cell contaminants. Nat. Biotechnol. 2000;18:882–887. doi: 10.1038/78504. [DOI] [PubMed] [Google Scholar]
  • 29.Sixou S, Teissié J. Specific electropermeabilization of leukocytes in a blood sample and application to large volumes of cells. Biochim. Biophys. Acta. 1990;1028:154–160. doi: 10.1016/0005-2736(90)90149-I. [DOI] [PubMed] [Google Scholar]
  • 30.Korohoda W, Ambrose EJ, Forrester JA. Some aspects of the dynamic characteristic of biological membranes. Folia Biol. 1967;15:371–393. [PubMed] [Google Scholar]
  • 31.Korohoda W, Forrester JA, Moreman KG, Ambrose EJ. Size changes in isolated nuclei of Ameba proteus on treatment with polyionic substances. Nature. 1968;217:615–617. doi: 10.1038/217615a0. [DOI] [PubMed] [Google Scholar]
  • 32.Hanpft R, Mohr K. Influence of cationic amphiphilic drugs on the phase-transition temperature of phospholipids with different polar groups. Biochim. Biophys. Acta-Biomembranes. 1985;814:156–162. doi: 10.1016/0005-2736(85)90431-6. [DOI] [Google Scholar]
  • 33.Gingell D. Contractile responses at the surface of an amphibian egg. J. Embryol. Exp. Morphol. 1970;23:583–609. [PubMed] [Google Scholar]
  • 34.Korohoda W, Kurowska A. Quantitative estimations of the thresholds of electrotactic responses in Amoeba proteus. Acta Protozool. 1970;7:375–382. [Google Scholar]
  • 35.Korohoda W, Mycielska M, Janda E, Madeja Z. Immediate and long-term galvanotactic responses of Ameba proteus to dc electric fields. Cell Motil. Cytoskeleton. 2000;45:10–26. doi: 10.1002/(SICI)1097-0169(200001)45:1<10::AID-CM2>3.0.CO;2-T. [DOI] [PubMed] [Google Scholar]
  • 36.Teissié J, Rols M. Manipulation of cell cytoskeleton affects the lifetime of cell membrane electropermeabilization. Ann N Y Acad. Sci. 1994;720:98–110. doi: 10.1111/j.1749-6632.1994.tb30438.x. [DOI] [PubMed] [Google Scholar]
  • 37.Korohoda J, Strzałka K. High efficiency genetic transformation in maize induced by exogeneous DNA. Z. Pflanzenphysiol. 1979;94:95–99. doi: 10.1016/S0044-328X(79)80122-1. [DOI] [Google Scholar]
  • 38.Madeja Z, Rak M, Wybieralska E, Rożański I, Masnyk M, Chmielewski M, Łysek R, Chojnacki T, Jankowski W, Ciepichal E, Świeżawska E, Tekle M, Wallner G. New cationic polyprenyl derivative proposed as a lipofecting agent. Acta Biochim. Pol. 2007;54:875–876. [PubMed] [Google Scholar]
  • 39.Dougherty TJ. An update on photodynamic therapy applications. J. Clin. Laser Med. Surg. 2002;20:3–7. doi: 10.1089/104454702753474931. [DOI] [PubMed] [Google Scholar]
  • 40.Nowak-Śliwińska P, Karocki A, Elas M, Pawlak A, Stochel G, Urbańska K. Verteportin, photofrin II, and merocyanine 540 as pDT photosensitizers against melanoma cells. Biochim. Biophys. Res. Commun. 2006;349:549–555. doi: 10.1016/j.bbrc.2006.08.060. [DOI] [PubMed] [Google Scholar]
  • 41.Jóźwiak Z, Leyko W. Role of membrane components in thermal injury and development of thermotolerance. Int. J. Radiat. Biol. 1992;62:743–56. doi: 10.1080/09553009214552701. [DOI] [PubMed] [Google Scholar]
  • 42.Kim SH, Kim JH, Alfieri AA, He SQ, Young CW. Gossypol, a hyperthermic sensitizer of HeLa cells. Cancer Res. 1985;45:6338–6340. [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES