Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2010 Dec 27;16(1):89–100. doi: 10.2478/s11658-010-0041-1

ZFAT is a critical molecule for cell survival in mouse embryonic fibroblasts

Keiko Doi 1,2, Takahiro Fujimoto 1,2, Midori Koyanagi 1,2, Toshiyuki Tsunoda 1,2, Yoko Tanaka 1,2, Yasuhiro Yoshida 1, Yasuo Takashima 2, Masahide Kuroki 2, Takehiko Sasazuki 3, Senji Shirasawa 1,2,
PMCID: PMC6275631  PMID: 21225468

Abstract

ZFAT was originally identified as an immune-related transcriptional regulator containing 18 C2H2-type zinc-finger domains and one AT-hook. ZFAT is highly conserved among species and functions as an anti-apoptotic molecule in the lymphoblastic leukemia cell line, MOLT-4. We recently demonstrated that ZFAT is an essential molecule for hematopoietic differentiation in blood islands through the direct regulation of particular transcriptional factors, including Tal1, for endothelial cell assembly, and for the branch point formation of capillary-like structures. However, the molecular mechanisms underlying the anti-apoptotic function of ZFAT remain unknown. Here, we report that ZFAT knockdown by small interfering RNA induced apoptosis in mouse embryonic fibroblasts (MEFs). This response had been similarly observed for MOLT-4 cells. To explore the molecular mechanisms for ZFAT in anti-apoptotic function in both MEFs and MOLT-4 cells, microarray expression analysis and quantitative RT-PCR were done. Of interest was that Bcl-2 and Il6st were identified as commonly down-regulated genes by the depletion of ZFAT for both MEFs and MOLT-4 cells. These results suggest that ZFAT is a critical molecule for cell survival in MEFs and MOLT-4 cells at least in part through the regulation of the apoptosis involved in the BCL-2- and IL6st-mediated pathways. Further elucidation of the molecular functions for ZFAT might shed light on the cellular programs in the mesoderm-derived cells.

Electronic Supplementary Material

Supplementary material is available for this article at 10.2478/s11658-010-0041-1 and is accessible for authorized users.

Key words: ZFAT, Transcription factor, MEFs, Apoptosis, Gene expression

Full Text

The Full Text of this article is available as a PDF (579.5 KB).

Abbreviations used

C2H2

Cys2-His2

ZFAT

zinc-finger gene in autoimmune thyroid disease susceptibility region

References

  • 1.Jacobson E.M., Tomer Y. The CD40, CTLA-4, thyroglobulin, TSH receptor, and PTPN22 gene quintet and its contribution to thyroid autoimmunity: back to the future. J. Autoimmun. 2007;28:85–98. doi: 10.1016/j.jaut.2007.02.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Sakai K., Shirasawa S., Ishikawa N., Ito K., Tamai H., Kuma K., Akamizu T., Tanimura M., Furugaki K., Yamamoto K., Sasazuki T. Identification of susceptibility loci for autoimmune thyroid disease to 5q31-q33 and Hashimoto’s thyroiditis to 8q23-q24 by multipoint affected sib-pair linkage analysis in Japanese. Hum. Mol. Genet. 2001;10:1379–1386. doi: 10.1093/hmg/10.13.1379. [DOI] [PubMed] [Google Scholar]
  • 3.Shirasawa S., Harada H., Furugaki K., Akamizu T., Ishikawa N., Ito K., Tamai H., Kuma K., Kubota S., Hiratani H., Tsuchiya T., Baba I., Ishikawa M., Tanaka M., Sakai K., Aoki M., Yamamoto K., Sasazuki T. SNPs in the promoter of a B cell-specific antisense transcript, SAS-ZFAT, determine susceptibility to autoimmune thyroid disease. Hum. Mol. Genet. 2004;13:2221–2231. doi: 10.1093/hmg/ddh245. [DOI] [PubMed] [Google Scholar]
  • 4.Koyanagi M., Nakabayashi K., Fujimoto T., Gu N., Baba I., Takashima Y., Doi K., Harada H., Kato N., Sasazuki T., Shirasawa S. ZFAT expression in B and T lymphocytes and identification of ZFAT-regulated genes. Genomics. 2008;91:451–457. doi: 10.1016/j.ygeno.2008.01.009. [DOI] [PubMed] [Google Scholar]
  • 5.Fujimoto T., Doi K., Koyanagi M., Tsunoda T., Takashima Y., Yoshida Y., Sasazuki T., Shirasawa S. ZFAT is an antiapoptotic molecule and critical for cell survival in MOLT-4 cells. FEBS Lett. 2009;583:568–572. doi: 10.1016/j.febslet.2008.12.063. [DOI] [PubMed] [Google Scholar]
  • 6.Tsunoda T., Takashima Y., Tanaka Y., Fujimoto T., Doi K., Hirose Y., Koyanagi M., Yoshida Y., Okamura T., Kuroki M., Sasazuki T., Shirasawa S. Immune-related zinc finger gene ZFAT is an essential transcriptional regulator for hematopoietic differentiation in blood islands. Proc. Natl. Acad. Sci. USA. 2010;107:14199–14204. doi: 10.1073/pnas.1002494107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Yoshida Y., Tsunoda T., Takashima Y., Fujimoto T., Doi K., Sasazuki T., Kuroki M., Iwasaki A., Shirasawa S. ZFAT is essential for endothelial cell assembly and the branch point formation of capillary-like structures in an angiogenesis model. Cell. Mol. Biol. Lett. 2010;15:541–550. doi: 10.2478/s11658-010-0028-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Takeuchi F., Nabika T., Isono M., Katsuya T., Sugiyama T., Yamaguchi S., Kobayashi S., Yamori Y., Ogihara T., Kato N. Evaluation of genetic loci influencing adult height in the Japanese population. J. Hum. Genet. 2009;54:749–752. doi: 10.1038/jhg.2009.99. [DOI] [PubMed] [Google Scholar]
  • 9.Comabella M., Craig D.W., Morcillo-Suarez C., Rio J., Navarro A., Fernandez M., Martin R., Montalban X. Genome-wide scan of 500,000 single-nucleotide polymorphisms among responders and nonresponders to interferon beta therapy in multiple sclerosis. Arch. Neurol. 2009;66:972–978. doi: 10.1001/archneurol.2009.150. [DOI] [PubMed] [Google Scholar]
  • 10.Chao D.T., Korsmeyer S.J. BCL-2 family: regulators of cell death. Annu. Rev. Immunol. 1998;16:395–419. doi: 10.1146/annurev.immunol.16.1.395. [DOI] [PubMed] [Google Scholar]
  • 11.Hirano T., Nakajima K., Hibi M. Signaling mechanisms through gp130: a model of the cytokine system. Cytokine Growth Factor Rev. 1997;8:241–252. doi: 10.1016/s1359-6101(98)80005-1. [DOI] [PubMed] [Google Scholar]
  • 12.Fukada T., Hibi M., Yamanaka Y., Takahashi-Tezuka M., Fujitani Y., Yamaguchi T., Nakajima K., Hirano T. Two signals are necessary for cell proliferation induced by a cytokine receptor gp130: involvement of STAT3 in anti-apoptosis. Immunity. 1996;5:449–460. doi: 10.1016/s1074-7613(00)80501-4. [DOI] [PubMed] [Google Scholar]
  • 13.Peterson T.R., Laplante M., Thoreen C.C., Sancak Y., Kang S.A., Kuehl W.M., Gray N.S., Sabatini D.M. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell. 2009;137:873–886. doi: 10.1016/j.cell.2009.03.046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Proud C.G. Dynamic balancing: DEPTOR tips the scales. J. Mol. Cell. Biol. 2009;1:61–63. doi: 10.1093/jmcb/mjp012. [DOI] [PubMed] [Google Scholar]
  • 15.Wang E.S., Teruya-Feldstein J., Wu Y., Zhu Z., Hicklin D.J., Moore M.A. Targeting autocrine and paracrine VEGF receptor pathways inhibits human lymphoma xenografts in vivo. Blood. 2004;104:2893–2902. doi: 10.1182/blood-2004-01-0226. [DOI] [PubMed] [Google Scholar]
  • 16.Santos S.C., Dias S. Internal and external autocrine VEGF/KDR loops regulate survival of subsets of acute leukemia through distinct signaling pathways. Blood. 2004;103:3883–3889. doi: 10.1182/blood-2003-05-1634. [DOI] [PubMed] [Google Scholar]
  • 17.Lee Y.K., Bone N.D., Strege A.K., Shanafelt T.D., Jelinek D.F., Kay N.E. VEGF receptor phosphorylation status and apoptosis is modulated by a green tea component, epigallocatechin-3-gallate (EGCG), in B-cell chronic lymphocytic leukemia. Blood. 2004;104:788–794. doi: 10.1182/blood-2003-08-2763. [DOI] [PubMed] [Google Scholar]
  • 18.Bellamy W.T., Richter L., Sirjani D., Roxas C., Glinsmann-Gibson B., Frutiger Y., Grogan T.M., List A.F. Vascular endothelial cell growth factor is an autocrine promoter of abnormal localized immature myeloid precursors and leukemia progenitor formation in myelodysplastic syndromes. Blood. 2001;97:1427–1434. doi: 10.1182/blood.v97.5.1427. [DOI] [PubMed] [Google Scholar]
  • 19.Das B., Yeger H., Tsuchida R., Torkin R., Gee M.F., Thorner P.S., Shibuya M., Malkin D., Baruchel S. A hypoxia-driven vascular endothelial growth factor/Flt1 autocrine loop interacts with hypoxiainducible factor-1alpha through mitogen-activated protein kinase/extracellular signal-regulated kinase 1/2 pathway in neuroblastoma. Cancer Res. 2005;65:7267–7275. doi: 10.1158/0008-5472.CAN-04-4575. [DOI] [PubMed] [Google Scholar]
  • 20.Lee T.H., Seng S., Sekine M., Hinton C., Fu Y., Avraham H.K., Avraham S. Vascular endothelial growth factor mediates intracrine survival in human breast carcinoma cells through internally expressed VEGFR1/FLT1. PLoS Med. 2007;4:e186. doi: 10.1371/journal.pmed.0040186. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

11658_2010_41_MOESM1_ESM.pdf (342.3KB, pdf)

Supplementary material, approximately 340 KB.


Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES