Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2012 Dec 27;18(1):75–88. doi: 10.2478/s11658-012-0040-5

Differentiation of mesenchymal stem cells derived from human bone marrow and subcutaneous adipose tissue into pancreatic islet-like clusters in vitro

Dhanasekaran Marappagounder 1,, Indumathi Somasundaram 2, Sudarsanam Dorairaj 2, Rajkumar Janavikula Sankaran 1
PMCID: PMC6275636  PMID: 23271432

Abstract

Although stem cells are present in various adult tissues and body fluids, bone marrow has been the most popular source of stem cells for treatment of a wide range of diseases. Recent results for stem cells from adipose tissue have put it in a position to compete for being the leading therapeutic source. The major advantage of these stem cells over their counterparts is their amazing proliferative and differentiation potency. However, their pancreatic lineage transdifferentiation competence was not compared to that for bone marrow-derived stem cells. This study aims to identify an efficient source for transdifferentiation into pancreatic islet-like clusters, which would increase potential application in curative diabetic therapy. The results reveal that mesenchymal stem cells (MSC) derived from bone marrow and subcutaneous adipose tissue can differentiate into pancreatic islet-like clusters, as evidenced by their islet-like morphology, positive dithizone staining and expression of genes such as Nestin, PDX1, Isl 1, Ngn 3, Pax 4 and Insulin. The pancreatic lineage differentiation was further corroborated by positive results in the glucose challenge assay. However, the results indicate that bone marrow-derived MSCs are superior to those from subcutaneous adipose tissue in terms of differentiation into pancreatic islet-like clusters. In conclusion, bone marrow-derived MSC might serve as a better alternative in the treatment of diabetes mellitus than those from adipose tissue.

Key words: Diabetes, Islet-like clusters, Bone marrow, Subcutaneous fat, Mesenchymal stem cells, Transdifferentiation, Flow cytometry, Intracellular staining, Dithizone staining, Glucose challenge assay

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Abbreviations used

ADSC

adipose-derived stem cells

APC

allophycocyanin

BD-FACS

Becton Dickinson-fluorescent activated cell sorting

BM

bone marrow

BMSC

bone marrow-derived stem cells

CD

cluster of differentiation

Cy

cyanine

DMEM-LG

Dulbecco’s modified eagle medium - low glucose

DPBS

Dulbecco’s phosphate buffer saline

DTZ

dithizone

ECM

extracellular matrix

EDTA

ethylene diamine tetra acetic acid

FBS

fetal bovine serum

FITC

fluorescein isothiocyanate

IDT

integrated DNA technologies

HLA-DR

human leukocyte antigen-DR

Isl 1

islet 1

MSC

mesenchymal stem cells

Ngn 3

neurogenin 3

Pax 4

paired box gene 4

PDX 1

pancreatic duodenal homeobox 1

PE

phyco erythrin

PER-CP

peridininchlorophyll-protein-complex

SVF

stromal vascular fraction

References

  • 1.Pittenger M.F., Mackay A.M., Beck S.C., Jaiswal R.K., Douglas R., Mosca J.D., Moorman M.A., Simonetti D.W., Craig S., Marshak D.R. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–147. doi: 10.1126/science.284.5411.143. [DOI] [PubMed] [Google Scholar]
  • 2.Horwitz E.M., Prockop D.J., Fitzpatrik L.A., Koo W.W., Gordon P.L., Neel M., Sussman M., Orchard P., Marx J.C., Pyeritz R.E., Brenner M.K. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nature Med. 1999;5:309–313. doi: 10.1038/6529. [DOI] [PubMed] [Google Scholar]
  • 3.Nathan S., Das D.S., Thambyah A., Fen C. Cell based therapy in the repair of osteochondral defects: A novel use for adipose tissue. Tissue Eng. 2003;9:733–744. doi: 10.1089/107632703768247412. [DOI] [PubMed] [Google Scholar]
  • 4.Garcia-Olmo D., Garcia-Arranz M., Herreros D., Pascual I., Peiro C., Rodriguez-Montes J.A. A phase 1 clinical trial of the treatment of Crohn’s fistula by adipose mesenchymal stem cell transplantation. Dis. Colon Rectum. 2005;48:1416–1423. doi: 10.1007/s10350-005-0052-6. [DOI] [PubMed] [Google Scholar]
  • 5.Zuk P.A., Zhu M., Mizuno H., Huang J., Futrell J.W., Katz A.J., Benhaim P., Lorenz H.P., Hedrick M.H. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7:211–228. doi: 10.1089/107632701300062859. [DOI] [PubMed] [Google Scholar]
  • 6.Jurgens W., Oedayrajsingh-Varma M., Helder M., ZandiehDoulabi B., Schouten T., Kuik D., Ritt M., van Milligen F. Effect of tissueharvesting site on yield of stem cells derived from adipose tissue: implications for cell-based therapies. Cell Tissue Res. 2008;332:415–426. doi: 10.1007/s00441-007-0555-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Wild S., Roglic G., Green A., Sicree R., King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27:1047–1053. doi: 10.2337/diacare.27.5.1047. [DOI] [PubMed] [Google Scholar]
  • 8.Shapiro A.M., Lakey J.R., Ryan E.A., Korbutt G.S., Toth E., Warnock G.L., Kneteman N.M., Rajotte R.V. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid free immunosuppressive regimen. N. Engl. J. Med. 2000;343:230–238. doi: 10.1056/NEJM200007273430401. [DOI] [PubMed] [Google Scholar]
  • 9.Yechoor V., Chan L. Minireview: beta cell replacement therapy for diabetes in the 21st century: manipulation of cell fate by directed differentiation. Mol. Endocrinol. 2010;24:1501–1511. doi: 10.1210/me.2009-0311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Tang D.Q., Cao L.Z., Burkhardt B.R., Xia C.Q., Litherland S.A., Atkinson M.A., Yang L.J. In vivo and in vitro characterization of insulin-producing cells obtained from murine bone marrow. Diabetes. 2004;53:1721–1732. doi: 10.2337/diabetes.53.7.1721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Timper K., Seboek D., Eberhardt M., Linscheid P., Christ-Crain M., Keller U., Muller B., Zulewski H. Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells. Biochem. Biophys. Res. Commun. 2006;341:1135–1140. doi: 10.1016/j.bbrc.2006.01.072. [DOI] [PubMed] [Google Scholar]
  • 12.Oh S.H., Muzzonigro T.M., Bae S.H., LaPlante J.M., Hatch H.M., Petersen B.E. Adult bone marrow-derived cells trans-differentiating into insulin-producing cells for the treatment of type I diabetes. Lab. Invest. 2004;84:607–617. doi: 10.1038/labinvest.3700074. [DOI] [PubMed] [Google Scholar]
  • 13.Mitchell J.B., McIntosh K., Zvonic S., Garrett S., Floyd Z.E., Kloster A., Halvorsen Di., Storms Y., Goh R.W., Kilroy B.G., Wu X., Gimble J.M. Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells. 2006;240:376–385. doi: 10.1634/stemcells.2005-0234. [DOI] [PubMed] [Google Scholar]
  • 14.Zhu Y., Liu T., Song K., Fan X., Ma X., Cui Z. Adipose-derived stem cell: a better stem cell than BMSC. Cell Biochem. Funct. 2008;26:664–675. doi: 10.1002/cbf.1488. [DOI] [PubMed] [Google Scholar]
  • 15.Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy5 (2003) 362–369. [DOI] [PubMed]
  • 16.Bai X., Yan Y., Song Y.H., Seidensticker M., Rabinovich B., Metzele R., Bankson J.A., Vykoukal D., Alt E. Both cultured and freshly isolated adipose tissue-derived stem cells enhance cardiac function after acute myocardial infarction. Eur. Heart J. 2010;31:489–501. doi: 10.1093/eurheartj/ehp568. [DOI] [PubMed] [Google Scholar]
  • 17.Zuk P.A., Zhu M., Ashjian P., De Ugarte D.A., Huang J.I., Mizuno H., Alfonso Z.C., Fraser J.K., Benhaim P., Hedrick M.H. Human Adipose Tissue Is a Source of Multipotent Stem Cells. Mol. Biol. Cell. 2002;13:4279–4295. doi: 10.1091/mbc.E02-02-0105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Rebelatto C.K., Aguiar A.M., Moretao M.P., Senegaglia A.C., Hansen P., Barchiki F., Oliveira J., Martins J., Kuligovski C., Mansur F., Christofis A., Amaral V.F., Brofman P.S., Goldenberg S., Nakao L.S., Correa A. dissimilar differentiation of mesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissue. Exp. Biol. Med. 2008;233:901–913. doi: 10.3181/0712-RM-356. [DOI] [PubMed] [Google Scholar]
  • 19.Sun Y., Chen L., Hou X.G., Hou W.K., Dong J.J., Sun L., Tang K.X., Wang B., Song J., Li H., Wang K.X. Differentiation of bone marrowderived mesenchymal stem cells from diabetic patients into insulinproducing cells in vitro. Chin. Med. J. 2007;120:771–776. [PubMed] [Google Scholar]
  • 20.Okura H., Komoda H., Fumimoto Y., Lee C.M., Nishida T., Sawa Y., Matsuyama A. Transdifferentiation of human adipose tissue-derived stromal cells into insulin-producing clusters. J. Artif. Organs. 2009;12:123–130. doi: 10.1007/s10047-009-0455-6. [DOI] [PubMed] [Google Scholar]
  • 21.Dhanasekaran M., Indumathi S., Kanmani A., Revathy K.M., Rajkumar J.S., Sudarsanam D. Surface antigenic profiling of stem cells from human omentum fat in comparison with subcutaneous fat and bone marrow. Cytotechnology. 2012;64:497–509. doi: 10.1007/s10616-012-9427-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Bonner-Weir S., Sharma A. Pancreatic stem cells. J. Pathol. 2002;197:519–526. doi: 10.1002/path.1158. [DOI] [PubMed] [Google Scholar]
  • 23.Halban P.A. Cellular sources of new pancreatic beta cells and therapeutic implications for regenerative medicine. Nat. Cell Biol. 2004;6:1021–1025. doi: 10.1038/ncb1104-1021. [DOI] [PubMed] [Google Scholar]
  • 24.Chelluri L.K., Kancherla R., Turlapati N., Vemuri S., Debnath T., Kumar P., Beevi S.S., Kamaraju R.S. Improved differentiation protocol of rat bone marrow precursors to functional islet like cells. Stem Cell Stud. 2011;1:36–41. doi: 10.4081/scs.2011.e5. [DOI] [Google Scholar]
  • 25.Sordi V., Melzi R., Mercalli A., Formicola R., Doglioni C., Tiboni F., Ferrari G., Nano R., Chwalek K., Lammert E., Bonifacio E., Borg D., Piemonti L. Mesenchymal cells appearing in pancreatic tissue culture are bone marrow-derived stem cells with the capacity to improve transplanted islet function. Stem Cells. 2010;28:386–386. doi: 10.1002/stem.314. [DOI] [PubMed] [Google Scholar]
  • 26.De Ugarte D.A., Alfonso Z., Zuk P.A., Elbarbury A., Zhu M., Ashjian P., Benhaim P., Hedrick M.H., Fraser J.K. Differential expression of stem cell mobilization associated-molecules on multi lineage cells from adipose tissue and bone marrow. Immunol. Lett. 2003;89:267–270. doi: 10.1016/S0165-2478(03)00108-1. [DOI] [PubMed] [Google Scholar]
  • 27.Reyes M., Lund T., Lenvik T., Aguiar D., Koodie L., Verfaillie C.M. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cell. Blood. 2001;98:2615–2625. doi: 10.1182/blood.V98.9.2615. [DOI] [PubMed] [Google Scholar]
  • 28.Choi J.B., Uchino H., Azuma K., Iwashita N., Tanaka Y., Mochizuki H., Migita M., Shimada T., Kawamori R., Watada H. Little evidence of transdifferentiation of bone marrow-derived cells into pancreatic beta cells. Diabetologia. 2003;46:1366–1374. doi: 10.1007/s00125-003-1182-9. [DOI] [PubMed] [Google Scholar]
  • 29.Lechner A., Yang Y.G., Blacken R.A., Wang L., Nolan A.L., Habener J.F. No Evidence for significant transdifferentiation of bone marrow into pancreatic beta-cells in vivo. Diabetes. 2004;53:616–623. doi: 10.2337/diabetes.53.3.616. [DOI] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES