Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2011 Dec 12;17(1):77–88. doi: 10.2478/s11658-011-0038-4

Interaction between plant polyphenols and the erythrocyte membrane

Sylwia Cyboran 1,, Jan Oszmiański 2, Halina Kleszczyńska 1
PMCID: PMC6275637  PMID: 22161078

Abstract

The purpose of these studies was to determine the effect of polyphenols contained in extracts from apple, strawberry and blackcurrant on the properties of the erythrocyte membrane, treated as a model of the biological membrane. To this end, the effect of the substances used on hemolysis, osmotic resistance and shape of erythrocytes, and on packing order in the hydrophilic region of the erythrocyte membrane was studied. The investigation was performed with spectrophotometric and fluorimetric methods, and using the optical microscope. The hemolytic studies have shown that the extracts do not induce hemolysis at the concentrations used. The results obtained from the spectrophotometric measurements of osmotic resistance of erythrocytes showed that the polyphenols contained in the extracts cause an increase in the resistance, rendering them less prone to hemolysis in hypotonic solutions of sodium chloride. The fluorimetric studies indicate that the used substances cause a decrease of packing order in the hydrophilic area of membrane lipids. The observations of erythrocyte shapes in a biological optical microscope have shown that, as a result of the substances’ action, the erythrocytes become mostly echinocytes, which means that the polyphenols of the extracts localize in the outer lipid monolayer of the erythrocyte membrane. The results obtained indicate that, in the concentration range used, the plant extracts are incorporated into the hydrophilic area of the membrane, modifying its properties.

Key words: Erythrocyte membrane, Plant polyphenols, Hemolysis, Osmotic resistance, Echinocytes, Generalized polarization, Lipid packing order

Full Text

The Full Text of this article is available as a PDF (628.2 KB).

Abbreviations used

cAK

catalytic subunit of cyclic activated protein kinase (AMP)

GP

generalized polarization

HPLC

high performance liquid chromatography

HPLC/DAD

high performance liquid chromatography/diode array detector

Laurdan

fluorescent probes 6-dodecanoyl-2-dimethylaminonaphthalene

PBS

phosphate buffer solution

UPLC/ESI/MS

ultra performance liquid chromatography/electrospray ionization/mass spectrometry

Footnotes

Paper authored by participants of the international conference: 18th Meeting, European Association for Red Cell Research, Wrocław — Piechowice, Poland, May 12–15th, 2011. Publication cost was covered by the organizers of this meeting.

References

  • 1.Jaganath, I.B. and Crozier, A. Dietary flavonoids and phenolic compounds, In: Plant Phenolics and Human Health: Biochemistry, Nutrition, and Pharmacology, 2010, John Wiley & Sons, Inc. DOI: 10.1002/978047053 1792.ch6.
  • 2.Wichtl M., Anton R. Ribis nigri folium. In: Wichtl M., Anton R., editors. Tradition, pratique officinale, science et thérapeutique. Paris: Tec et Doc; 1999. pp. 471–473. [Google Scholar]
  • 3.Cyboran S., Bonarska-Kujawa D., Kapusta I., Oszmiański J., Kleszczyńska H. Antioxidant potentials of polyphenolic extracts from leaves of trees and fruit bushes. Curr. Top. Biophys. 2011;34:15–21. [Google Scholar]
  • 4.Garbacki N., Angenot L., Bassleer C., Damas J., Tins M. Effects of prodelphinidins isolated from Ribes nigrum on chondrocyte metabolism and COX activity. Naunyn-Schemiedeberg’s Arch. Pharmacol. 2002;365:434–441. doi: 10.1007/s00210-002-0553-y. [DOI] [PubMed] [Google Scholar]
  • 5.Declume C. Anti-inflammatory evaluation of a hydroalcoholic extract of black currant leaves (Ribes nigrum) J. Ethnopharmacol. 1989;27:91–98. doi: 10.1016/0378-8741(89)90081-0. [DOI] [PubMed] [Google Scholar]
  • 6.Wang B.H., Foo L.Y., Polya G.M. Differential inhibition of eukaryote protein kinases by condensed tannins. Phytochemistry. 1996;43:359–365. doi: 10.1016/0031-9422(96)00259-2. [DOI] [PubMed] [Google Scholar]
  • 7.Chenah P.H., Ifansyah N., Chahine R., Mounayar-Chalfoun A., Gleye J., Moulis C. Comparative effects of total flavonoids extracted from Ribes nigrum leaves, rutin and rutin and isoquercitrin on biosynthesis and release of prostaglandis in the ex vivo rabbit heart. Prostaglandins Leukot. Med. 1986;22:295–300. doi: 10.1016/0262-1746(86)90140-x. [DOI] [PubMed] [Google Scholar]
  • 8.Mechikova G.Ya., Stepanova T.A., Zaguzova E.V. Quantitative determination of total phenols in strawberry leaves. Pharm. Chem. J. 2007;41:97–100. [Google Scholar]
  • 9.Karjalainen, R., Lehtinen, A., Hietaniemi, V., Pihlava, J.M., Jokinen, K., Keinänen, M. and Julkunen-Tiito, R. Benzothiadiazole and glycine betaine treatments enhance phenolic compound production in strawberry. In: IV International Strawberry Symposium, ISHS Acta Hortic., 2002, 567–576.
  • 10.Hukkanen A.T., Kokko H.I., Buchala A.J., McDougall G.J., Stewart D., Kärenlampi S.O., Karjalainen R.O. Benzothiadiazole induces the accumulation of phenolics and improves resistance to powdery mildew in strawberries. J. Agric. Food Chem. 2007;55:1862–1870. doi: 10.1021/jf063452p. [DOI] [PubMed] [Google Scholar]
  • 11.Simirgiotis M.J., Schmeda-Hirschmann G. Determination of phenolic composition and antioxidant activity in fruits, rhizomes and leaves of the white strawberry (Fragaria chiloensis spp. chiloensis form chiloensis) using HPLC-DAD-ESI-MS and free radical quenching techniques. J. Food Compos. Anal. 2010;23:545–553. [Google Scholar]
  • 12.Wang S.Y., Lin H.-S. Antioxidant activity on fruits and leaves of blackbeery, raspberry and strawberry varies with cultivar and developmental stage. J. Agric. Food. Chem. 2000;48:140–146. doi: 10.1021/jf9908345. [DOI] [PubMed] [Google Scholar]
  • 13.Katalinic V., Milos M., Kulisic T., Jukic M. Screening of 70 medical plant extracts for antioxidant capacity and total phenols. Food Chem. 2006;94:550–557. [Google Scholar]
  • 14.Mudnic I., Modun D., Brizac I., Vakovic J., Generalic I., Katalinic V., Biluscic T., Ljubenkov I., Boban M. Cardiovascular effects in vitro of aqueous extract of wild strawberry leaves. Int. J. Phytoth. Phytopharmacol. 2009;16:462–469. doi: 10.1016/j.phymed.2008.11.004. [DOI] [PubMed] [Google Scholar]
  • 15.Raudoniūtė I., Rovira J., Venskutonis P.R., Damašius J., Rivero-Pérez M.D., González-SanJosé M.L. Antioxidant properties of garden strawberry leaf extract and its effect on fish oil oxidation. Food Sci. Technol. 2011;46:935–943. [Google Scholar]
  • 16.Raa J. Polyphenols and natural resistance of apple leaves against Venturia inaequalis. Eur. J. Plant Pathol. 1968;74:37–45. [Google Scholar]
  • 17.Rice-Evans C.A., Miller N., Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996;20:933–956. doi: 10.1016/0891-5849(95)02227-9. [DOI] [PubMed] [Google Scholar]
  • 18.Robards K., Prenzler P., Tucke G., Swatsitang P., Glover W. Phenolic compounds and their role in oxidative processes in fruits. Food Chem. 1999;66:401–436. [Google Scholar]
  • 19.Oszmiański J., Wolniak M., Wojdyło A., Wawer I. Influence of apple puree preparation and storage on polyphenol contents and antioxidant activity. Food Chem. 2008;107:1473–1484. [Google Scholar]
  • 20.Oszmiański J., Wojdyło A., Kolniak J. Effect of enzymatic mash treatment and storage on phenolic composition, antioxidant activity, and turbidity of cloudy apple juice. J. Agric. Food Chem. 2009;57:7078–7085. doi: 10.1021/jf900806u. [DOI] [PubMed] [Google Scholar]
  • 21.Gąsiorowski K., Szyba K., Brokos B., Kołaczyńska B., Jankowiak-Włodarczyk M., Oszmiański J. Antimutagenic activity of anthocyanins isolated from Aronia melanocarpa fruits. Cancer Lett. 1997;119:37–46. doi: 10.1016/s0304-3835(97)00248-6. [DOI] [PubMed] [Google Scholar]
  • 22.Oszmiański J., Wojdyło A. Aronia melanocarpa phenolics and their antioxidant activity. Eur. Food Res. Technol. 2005;221:809–813. [Google Scholar]
  • 23.Oszmiański J., Wojdyło A. Effects of various clarification treatments on phenolic compounds and color of apple juice. Eur. Food Res. Technol. 2007;224:755–762. [Google Scholar]
  • 24.Skupień K., Oszmiański J. Comparison of six cultivars of strawberries (fragaria x ananasa duch.) grown in northwest Poland. Eur. Food Res. Technol. 2004;219:66–70. [Google Scholar]
  • 25.Dodge J.T., Mitchell C., Hanahan D.J. The preparation and chemical characteristics of hemoglobin-free ghosts of erythrocytes. Arch. Biochem. 1963;100:119–130. doi: 10.1016/0003-9861(63)90042-0. [DOI] [PubMed] [Google Scholar]
  • 26.Bradford M.M. Rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  • 27.Lakowicz J.R. Principles of Fluorescence Spectroscopy. London, New York: Plenum; 2006. Solvent and environmental effects; pp. 205–235. [Google Scholar]
  • 28.Bernhardt I., Ellory J.C. Red cell membrane transport in health and disease. Berlin: Springer-Verlag; 2003. pp. 1–748. [Google Scholar]
  • 29.Boris M., Bukowska B., Baczyńska J., Duda W., Pilarski R., Gulewicz K. The effect of leaf and bark extracts of Uncaria tomentosa on the human erythrocyte membrane. Wrocław: Biological Membranes, Monograph; 2008. pp. 143–148. [Google Scholar]
  • 30.Pawlikowska-Pawlęga B., Gruszecki W., Misiak L., Gawron A. The study of the quercetin action on human erythrocyte membranes. Biochem. Pharm. 2003;66:605–612. doi: 10.1016/s0006-2952(03)00344-7. [DOI] [PubMed] [Google Scholar]
  • 31.Abe H., Katada K., Orita M., Nishikibe M. Effects of calcium antagonists on the erythrocyte membrane. J. Pharm. Pharmacol. 1991;43:22–26. doi: 10.1111/j.2042-7158.1991.tb05441.x. [DOI] [PubMed] [Google Scholar]
  • 32.Parasassi T., De Stasio G., Ravagnan G., Rusch R.M., Gratton E. Quantitation of lipid phases in phospholipid vesicles by the generalized polarization of Laurdan fluorescence. Biophys. J. 1991;60:179–189. doi: 10.1016/S0006-3495(91)82041-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Chong P.L., Wong P.T. Interactions of Laurdan with phosphatidylcholine liposomes: a high pressure FTIR study. Biochim. Biophys. Acta. 1993;1149:260–266. doi: 10.1016/0005-2736(93)90209-i. [DOI] [PubMed] [Google Scholar]
  • 34.Bonarska-Kujawa D., Pruchnik H., Oszmiański J., Sarapuk J., Kleszczyńska H. Changes caused by fruit extracts in the lipid phase of biological and model membranes. Food Biophys. 2011;6:58–67. doi: 10.1007/s11483-010-9175-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Suwalsky M., Orellana P., Avello M., Villena F., Sotomayor C.P. Human erythrocytes are affected in vitro by extracts of Ungi molinae leaves. Food Chem. Toxicol. 2006;44:1393–1398. doi: 10.1016/j.fct.2006.03.003. [DOI] [PubMed] [Google Scholar]
  • 36.Sheetz M.P., Singer S.J. Proc. Natl. Acad. Sci. 1974;71:4457–4461. doi: 10.1073/pnas.71.11.4457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Żyłka R., Kleszczyńska H., Kupiec J., Bonarska-Kujawa D., Hładyszowski J., Przestalski S. Modifications of erythrocyte membrane hydration induced by organic tin compounds. Cell Biol. Int. 2009;33:801–806. doi: 10.1016/j.cellbi.2009.04.016. [DOI] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES