Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2006 Sep 14;11(4):475–487. doi: 10.2478/s11658-006-0039-x

A comparative gene-expression analysis of CD34+ hematopoietic stem and progenitor cells grown in static and stirred culture systems

Qunliang Li 1,2, Qiwei Liu 1, Haibo Cai 1, Wen-Song Tan 1,
PMCID: PMC6275641  PMID: 16983455

Abstract

Static and stirred culture systems are widely used to expand hematopoietic cells, but differential culture performances are observed between these systems. We hypothesize that these differential culture outcomes are caused by the physiological responses of CD34+ hematopoietic stem and progenitor cells (HSPCs) to the different physical microenvironments created in these culture devices. To understand the genetic changes provoked by culture microenvironments, the gene expression profiling of CD34+ HSPCs grown in static and stirred culture systems was compared using SMART-PCR and cDNA arrays. The results revealed that 103 and 99 genes were significantly expressed in CD34+ cells from static and stirred systems, respectively. Of those, 91 have similar levels of expression, while 12 show differential transcription levels. These differentially expressed genes are mainly involved in anti-oxidation, DNA repair, apoptosis, and chemotactic activity. A quantitative molecular understanding of the influences of growth microenvironments on transcriptional events in CD34+ HSPCs should give new insights into optimizing culture strategies to produce hematopoietic cells.

Key words: CD34+ hematopoietic stem and progenitor cells, Ex vivo expansion, Culture microenvironment, SMART-PCR, cDNA array

Full Text

The Full Text of this article is available as a PDF (482.3 KB).

Abbreviations used

CB

cord blood

CFC

colony-forming cells

EDTA

ethylenediaminetetraacetic acid

HSPCs

hematopoietic stem and progenitor cells

IMDM

Iscove’s modified Dulbecco’s medium

MNC

mononuclear cells

PBS

phosphate buffer solution

ROS

reactive oxygen species

SDS

sodium dodecylsulfate

SSC

sodium chloride/sodium citrate

Footnotes

An erratum to this article is available athttp://dx.doi.org/10.2478/s11658-006-0051-1.

References

  • 1.Piacibello W., Sanavio F., Garetto L., Severino A., Bergandi D., Ferrario J., Fagioli F., Berger M., Aglietta M. Extensive amplification and self-renewal of human primitive hematopoietic stem cells from cord blood. Blood. 1997;89:2644–2653. [PubMed] [Google Scholar]
  • 2.Collins P.C., Miller W.M., Papoutsakis E.T. Stirred culture of peripheral and cord blood hematopoietic cells offers advantages over traditional static systems for clinically relevant applications. Biotechnol. Bioeng. 1998;59:534–543. doi: 10.1002/(SICI)1097-0290(19980905)59:5<534::AID-BIT2>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
  • 3.Zandstra P.W., Eaves C.J., Piret J.M. Expansions of hematopoietic progenitor cell populations in stirred suspension bioreactors of normal human bone marrow cells. Biotechnology. 1994;12:909–914. doi: 10.1038/nbt0994-909. [DOI] [PubMed] [Google Scholar]
  • 4.Zandstra P.W., Nagy A. Stem cell bioengineering. Annu. Rev. Biomed. Eng. 2001;3:275–305. doi: 10.1146/annurev.bioeng.3.1.275. [DOI] [PubMed] [Google Scholar]
  • 5.Carswell K.S., Papoutsakis E.T. Culture of human T cells in stirred bioreactors for cellular immunotherapy applications: shear, proliferation, and the IL-2 receptor. Biotechnol. Bioeng. 2000;68:328–338. doi: 10.1002/(SICI)1097-0290(20000505)68:3<328::AID-BIT11>3.0.CO;2-V. [DOI] [PubMed] [Google Scholar]
  • 6.McDowell C.L., Papoutsakis E.T. Increased agitation intensity increases CD13 receptor surface content and mRNA levels, and alters the metabolism of HL60 cells cultured in stirred tank bioreactors. Biotechnol. Bioeng. 1998;60:239–250. doi: 10.1002/(SICI)1097-0290(19981020)60:2<239::AID-BIT11>3.0.CO;2-H. [DOI] [PubMed] [Google Scholar]
  • 7.Li Q., Cai H., Liu Q., Tan W.S. Differential gene expression of human CD34+ hematopoietic stem and progenitor cells before and after culture. Biotechnol. Lett. 2006;28:389–394. doi: 10.1007/s10529-005-6064-4. [DOI] [PubMed] [Google Scholar]
  • 8.Martindale J.L., Holbrook N.J. Cellular response to oxidative stress: signaling for suicide and survival. J. Cell Physiol. 2002;192:1–15. doi: 10.1002/jcp.10119. [DOI] [PubMed] [Google Scholar]
  • 9.Shen C., Nathan C. Nonredundant antioxidant defense by multiple two-cysteine peroxiredoxins in human prostate cancer cells. Mol. Med. 2002;8:95–102. doi: 10.1007/s00894-002-0075-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Kokubo Y., Matson G.B., Derugin N., Hill T., Mancuso A., Chan P.H., Weinstein P.R. Transgenic mice expressing human copper-zinc superoxide dismutase exhibit attenuated apparent diffusion coefficient reduction during reperfusion following focal cerebral ischemia. Brain Res. 2002;947:1–8. doi: 10.1016/S0006-8993(02)02899-8. [DOI] [PubMed] [Google Scholar]
  • 11.Jemth P., Mannervik B. Kinetic characterization of recombinant human glutathione transferase T1-1, a polymorphic detoxication enzyme. Arch. Biochem. Biophys. 1997;348:247–254. doi: 10.1006/abbi.1997.0357. [DOI] [PubMed] [Google Scholar]
  • 12.Giglia-Mari G., Coin F., Ranish J.A., Hoogstraten D., Theil A., Wijgers N., Jaspers N.G., Raams A., Argentini M., van der Spek P.J., Botta E., Stefanini M., Egly J.M., Aebersold R., Hoeijmakers J.H., Vermeulen W. A new, tenth subunit of TFIIH is responsible for the DNA repair syndrome trichothiodystrophy group A. Nat. Genet. 2004;36:714–719. doi: 10.1038/ng1387. [DOI] [PubMed] [Google Scholar]
  • 13.Warnecke-Eberz U., Metzger R., Miyazono F., Baldus S.E., Neiss S., Brabender J., Schaefer H., Doerfler W., Bollschweiler E., Dienes H.P., Mueller R.P., Danenberg P.V., Hoelscher A.H., Schneider P.M. High specificity of quantitative excision repair cross-complementing 1 messenger RNA expression for prediction of minor histopathological response to neoadjuvant radiochemotherapy in esophageal cancer. Clin. Cancer Res. 2004;10:3794–3799. doi: 10.1158/1078-0432.CCR-03-0079. [DOI] [PubMed] [Google Scholar]
  • 14.Bruce A.J., Boling W., Kindy M.S., Peschon J., Kraemer P.J., Carpenter M.K., Holtsberg F.W., Mattson M.P. Altered neuronal and microglial responses to excitotoxic and ischemic brain injury in mice lacking TNF receptors. Nat. Med. 1996;2:788–794. doi: 10.1038/nm0796-788. [DOI] [PubMed] [Google Scholar]
  • 15.Kothari S., Cizeau J., McMillan-Ward E., Israels S.J., Bailes M., Ens K., Kirshenbaum L.A., Gibson S.B. BNIP3 plays a role in hypoxic cell death in human epithelial cells that is inhibited by growth factors EGF and IGF. Oncogene. 2003;22:4734–4744. doi: 10.1038/sj.onc.1206666. [DOI] [PubMed] [Google Scholar]
  • 16.Yoon D.Y., Buchler P., Saarikoski S.T., Hines O.J., Reber H.A., Hankinson O. Identification of genes differentially induced by hypoxia in pancreatic cancer cells. Biochem. Biophys. Res. Commun. 2001;288:882–886. doi: 10.1006/bbrc.2001.5867. [DOI] [PubMed] [Google Scholar]
  • 17.Essers M.A., de Vries-Smits L.M., Barker N., Polderman P.E., Burgering B.M., Korswagen H.C. Functional interaction between beta-catenin and FOXO in oxidative stress signaling. Science. 2005;308:1181–1184. doi: 10.1126/science.1109083. [DOI] [PubMed] [Google Scholar]
  • 18.Ito K., Hirao A., Arai F., Matsuoka S., Takubo K., Hamaguchi I., Nomiyama K., Hosokawa K., Sakurada K., Nakagata N., Ikeda Y., Mak T.W., Suda T. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature. 2004;431:997–1002. doi: 10.1038/nature02989. [DOI] [PubMed] [Google Scholar]
  • 19.Han W., Ye Q., Moore M.A.S. A soluble form of human Delta-like-1 inhibits differentiation of hematopoietic progenitor cells. Blood. 2000;95:1616–1625. [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES