Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2010 Jun 28;15(4):530–540. doi: 10.2478/s11658-010-0025-1

ZNF300, a recently identified human transcription factor, activates the human IL-2Rβ promoter through the overlapping ZNF300/EGR1 binding site

Lu Xue 1, Hongling Qiu 1, Jian Ma 1, Mingxiong Guo 1, Wenxin Li 1,
PMCID: PMC6275642  PMID: 20585888

Abstract

ZNF300 was recently identified as a member of the human KRAB/C2H2 zinc finger protein family. Little is known about the role of ZNF300 in human gene regulation networks. In this study, the DNA-binding property of ZNF300 was further analyzed. We found that the recombinant ZNF300 could bind to the binding site 5′-GCGGGGGCG-3′ of Egr1, another member of the KRAB/C2H2 zinc finger protein family. Similarly, recombinant Egr1 also showed a similar binding affinity to the ZNF300 binding site 5′-CTGGGGGCG-3′. Bioinformatics analysis revealed that there is an overlapping ZNF300/Egr1 binding site in the human IL-2Rβ promoter region, which was previously known to be recognized by endogenous Egr1. Electrophoretic mobility shift assays showed that endogenous ZNF300 could also bind to this site. A transient transfection assay revealed that both ZNF300 and Egr1 could transactivate the IL-2Rβ promoter, and that the activation was abrogated by a mutation of residues in the overlapping ZNF300/Egr1 binding site. Co-expression of ZNF300 and Egr1 led to enhanced IL-2Rβ promoter activity. Thus, ZNF300 is likely to be another regulator of the human IL-2Rβ promoter.

Key words: ZNF300, Egr-1, IL-2Rβ promoter, Activation

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Abbreviations used

EMSA

electrophoretic mobility shift assay

IL-2Rβ

IL-2 receptor beta chain

KRAB

Krüppel-asscociated box

TPA

12-o-tetradecanoylphorbol-13-acetate

ZNF300

zinc finger 300

Footnotes

These authors contributed equally to this work

References

  • 1.Orphanides G., Reinberg D. A unified theory of gene expression. Cell. 2002;108:439–451. doi: 10.1016/s0092-8674(02)00655-4. [DOI] [PubMed] [Google Scholar]
  • 2.Brandenberger R., Wei H., Zhang S., Lei S., Murage J., Fisk G.J., Li Y., Xu C., Fang R., Guegler K., Rao M.S., Mandalam R., Lebkowski J., Stanton L.W. Transcriptome characterization elucidates signaling networks that control human ES cell growth and differentiation. Nat. Biotechnol. 2004;22:707–716. doi: 10.1038/nbt971. [DOI] [PubMed] [Google Scholar]
  • 3.Schuh R., Aicher W., Gaul U., Cote S., Preiss A., Maier D., Seifert E., Nauber U., Schroder C., Kemler R., Jäckle H. A conserved family of nuclear proteins containing structural elements of the finger protein encoded by Kruppel, a Drosophila segmentation gene. Cell. 1986;47:1025–1032. doi: 10.1016/0092-8674(86)90817-2. [DOI] [PubMed] [Google Scholar]
  • 4.Dai K.S., Liew C.C. Chromosomal, in silico and in vitro expression analysis of cardiovascular-based genes encoding zinc finger proteins. J. Mol. Cell Cardiol. 1999;31:1749–1769. doi: 10.1006/jmcc.1999.1011. [DOI] [PubMed] [Google Scholar]
  • 5.Decker E.L., Nehmann N., Kampen E., Eibel H., Zipfel P.F., Skerka C. Early growth response proteins (EGR) and nuclear factors of activated T cells (NFAT) form heterodimers and regulate proinflammatory cytokine gene expression. Nucleic Acids Res. 2003;31:911–921. doi: 10.1093/nar/gkg186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Gou D., Wang J., Gao L., Sun Y., Peng X., Huang J., Li W. Identification and functional analysis of a novel human KRAB/C2H2 zinc finger gene ZNF300. Biochim. Biophys. Acta. 2004;1676:203–209. doi: 10.1016/j.bbaexp.2003.11.011. [DOI] [PubMed] [Google Scholar]
  • 7.Bowden N.A., Croft A., Scott R.J. Gene expression profiling in familial adenomatous polyposis adenomas and desmoid disease. Hered. Cancer Clin. Pract. 2007;5:79–96. doi: 10.1186/1897-4287-5-2-79. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Ferguson L.R., Philpott M., Dryland P. Nutrigenomics in the whole-genome scanning era: Crohn’s disease as example. Cell. Mol. Life Sci. 2007;64:3105–3118. doi: 10.1007/s00018-007-7303-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Church D.M., Goodstadt L., Hillier L.W., Zody M.C., Goldstein S., She X., Bult C.J., Agarwala R., Cherry J.L., DiCuccio M., Hlavina W., Kapustin Y., Meric P., Maglott D., Birtle Z., Marques A.C., Graves T., Zhou S., Teague B., Potamousis K., Churas C., Place M., Herschleb J., Runnheim R., Forrest D., Amos-Landgraf J., Schwartz D.C., Cheng Z., Lindblad-Toh K., Eichler E.E., Ponting C.P. Lineage-specific biology revealed by a finished genome assembly of the mouse. PLoS Biol. 2009;7:e1000112. doi: 10.1371/journal.pbio.1000112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Qiu H., Xue L., Gao L., Shao H., Wang D., Guo M., Li W. Identification of the DNA binding element of the human ZNF300 protein. Cell. Mol. Biol. Lett. 2008;13:391–403. doi: 10.2478/s11658-008-0005-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Bernstein S.H., Kharbanda S.M., Sherman M.L., Sukhatme V.P., Kufe D.W. Posttranscriptional regulation of the zinc finger-encoding EGR-1 gene by granulocyte-macrophage colony-stimulating factor in human U-937 monocytic leukemia cells: involvement of a pertussis toxin-sensitive G protein. Cell Growth Differ. 1991;2:273–278. [PubMed] [Google Scholar]
  • 12.Milbrandt J. A nerve growth factor-induced gene encodes a possible transcriptional regulatory factor. Science. 1987;238:797–799. doi: 10.1126/science.3672127. [DOI] [PubMed] [Google Scholar]
  • 13.Seyfert V.L., McMahon S.B., Glenn W.D., Yellen A.J., Sukhatme V.P., Cao X.M., Monroe J.G. Methylation of an immediate-early inducible gene as a mechanism for B cell tolerance induction. Science. 1990;250:797–800. doi: 10.1126/science.2237429. [DOI] [PubMed] [Google Scholar]
  • 14.Suva L.J., Ernst M., Rodan G.A. Retinoic acid increases zif268 early gene expression in rat preosteoblastic cells. Mol. Cell Biol. 1991;11:2503–2510. doi: 10.1128/mcb.11.5.2503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Kim J.C., Yoon J.B., Koo H.S., Chung I.K. Cloning and characterization of the 5′-flanking region for the human topoisomerase III gene. J. Biol. Chem. 1998;273:26130–26137. doi: 10.1074/jbc.273.40.26130. [DOI] [PubMed] [Google Scholar]
  • 16.Lin J.X., Leonard W.J. The immediate-early gene product Egr-1 regulates the human interleukin-2 receptor beta-chain promoter through noncanonical Egr and Sp1 binding sites. Mol. Cell Biol. 1997;17:3714–3722. doi: 10.1128/mcb.17.7.3714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Lin J.X., Bhat N.K., John S., Queale W.S., Leonard W.J. Characterization of the human interleukin-2 receptor beta-chain gene promoter: regulation of promoter activity by ets gene products. Mol. Cell Biol. 1993;13:6201–6210. doi: 10.1128/mcb.13.10.6201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Minc E., de Coppet P., Masson P., Thiety L., Dutertre S., Amor-Gueret M., Jaulin C. The human copper-zinc superoxide dismutase gene (SOD1) proximal promoter is regulated by Sp1, Egr-1, and WT1 via non-canonical binding sites. J. Biol. Chem. 1999;274:503–509. doi: 10.1074/jbc.274.1.503. [DOI] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES