Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2009 Feb 23;14(3):411–423. doi: 10.2478/s11658-009-0008-2

The effects of markedly raised intracellular sphingosine kinase-1 activity in endothelial cells

Vidya Limaye 1,2,3,, Mathew A Vadas 4, Stuart M Pitson 2,5, Jennifer R Gamble 4
PMCID: PMC6275643  PMID: 19238331

Abstract

The enzyme sphingosine kinase-1 (SK1) promotes the formation of sphingosine-1-phosphate (S1P), which is an important survival factor for endothelial cells (EC). Modest increases in intracellular SK1 activity in the EC are known to confer a survival advantage upon the cells. Here, we investigated the effects of more dramatic increases in intracellular SK1 in the EC. We found that these cells show reduced cell survival under conditions of stress, enhanced caspase-3 activity, cell cycle inhibition, and cell-cell junction disruption. We propose that alterations in the phosphorylation state of the enzyme may explain the differential effects on the phenotype with modest versus high levels of enforced expression of SK1. Our results suggest that SK1 activity is subject to control in the EC, and that this control may be lost in conditions involving vascular regression.

Key words: Sphingosine kinase-1, Endothelial cells, Cell survival

Full Text

The Full Text of this article is available as a PDF (3.2 MB).

Abbreviations used

EC

endothelial cell

EV

empty vector

HUVEC

human umbilical vein endothelial cell

PECAM-1

platelet-endothelial cell adhesion molecule-1

pfu

plaque-forming unit

SK1

sphingosine kinase-1 (SK1)

S1P

sphingosine 1-phosphate

TNF

tumour necrosis factor

References

  • 1.Kwon Y.G., Min J.K., Kim K.M., Lee D.J., Billiar T.R., Kim Y.M. Sphingosine 1-phosphate protects human umbilical vein endothelial cells from serum-deprived apoptosis by nitric oxide production. J. Biol. Chem. 2001;276:10627–10633. doi: 10.1074/jbc.M011449200. [DOI] [PubMed] [Google Scholar]
  • 2.Wang F., Van Brocklyn J.R., Hobson J.P., Movafagh S., Zukowska-Grojec Z., Milstien S., Spiegel S. Sphingosine 1-phosphate stimulates cell migration through a G(i)- coupled cell surface receptor. Potential involvement in angiogenesis. J. Biol. Chem. 1999;274:35343–35350. doi: 10.1074/jbc.274.50.35343. [DOI] [PubMed] [Google Scholar]
  • 3.Lee M.J., Van Brocklyn J.R., Thangada S., Liu C.H., Hand A.R., Menzeleev R., Spiegel S., Hla T. Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science. 1998;279:1552–1555. doi: 10.1126/science.279.5356.1552. [DOI] [PubMed] [Google Scholar]
  • 4.Ghosh T.K., Bian J., Gill D.L. Intracellular calcium release mediated by sphingosine derivatives generated in cells. Science. 1990;248:1653–1656. doi: 10.1126/science.2163543. [DOI] [PubMed] [Google Scholar]
  • 5.Desai N.N., Zhang H., Olivera A., Mattie M.E., Spiegel S. Sphingosine-1-phosphate, a metabolite of sphingosine, increases phosphatidic acid levels by phospholipase D activation. J. Biol. Chem. 1992;267:23122–23128. [PubMed] [Google Scholar]
  • 6.Limaye V., Li X., Hahn C., Xia P., Berndt M.C., Vadas M.A., Gamble J.R. Sphingosine kinase-1 enhances endothelial cell survival through a PECAM-1-dependent activation of PI-3K/Akt and regulation of Bcl-2 family members. Blood. 2005;105:3169–3177. doi: 10.1182/blood-2004-02-0452. [DOI] [PubMed] [Google Scholar]
  • 7.Evans P.C., Taylor E.R., Kilshaw P.J. Signaling through CD31 protects endothelial cells from apoptosis. Transplantation. 2001;71:457–460. doi: 10.1097/00007890-200102150-00020. [DOI] [PubMed] [Google Scholar]
  • 8.Xia P., Gamble J.R., Wang L., Pitson S.M., Moretti P.A., Wattenberg B.W., D’Andrea R.J., Vadas M.A. An oncogenic role of sphingosine kinase. Curr. Biol. 2000;10:1527–1530. doi: 10.1016/S0960-9822(00)00834-4. [DOI] [PubMed] [Google Scholar]
  • 9.Cramer E.M., Berger G., Berndt M.C. Platelet-granule and plasma membrane share two components: CD9 and PECAM-1. Blood. 1994;84:1722–1730. [PubMed] [Google Scholar]
  • 11.Litwin M., Clark K., Noack L., Furze J., Berndt M., Albelda S., Vadas M., Gamble J.R. Novel cytokine-independent induction of endothelial adhesion molecules regulated by platelet/endothelial cell adhesion molecule (CD31) J. Cell. Biol. 1997;139:219–228. doi: 10.1083/jcb.139.1.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Pitson S.M., Moretti P.A.B., Zebol J.R., Lynn H.E., Xia P., Vadas M.A., Wattenberg B.W. Activation of sphingosine kinase 1 by ERK1/2-mediated phosphorylation. EMBO J. 2003;22:5491–5500. doi: 10.1093/emboj/cdg540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Xia P., Gamble J.R., Rye K.A., Wang L., Hii C.S., Cockerill P., Khew-Goodall Y., Bert A.G., Barter P.J., Vadas M.A. Tumor necrosis factor-alpha induces adhesion molecule expression through the sphingosine kinase pathway. Proc. Natl. Acad. Sci. USA. 1998;95:14196–14201. doi: 10.1073/pnas.95.24.14196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Spiegel S., Olivera A., Zhang H., Thompson E.W., Su Y., Berger A. Sphingosine-1-phosphate, a novel second messenger involved in cell growth regulation and signal transduction, affects growth and invasiveness of human breast cancer cells. Breast Cancer Res. Treat. 1994;31:337–348. doi: 10.1007/BF00666166. [DOI] [PubMed] [Google Scholar]
  • 15.Pitson S.M., Moretti P.A., Zebol J.R., Xia P., Gamble J.R., Vadas M.A., D’Andrea R.J., Wattenberg B.W. Expression of a catalytically inactive sphingosine kinase mutant blocks agonist-induced sphingosine kinase activation. A dominant-negative sphingosine kinase. J. Biol. Chem. 2000;275:33945–33950. doi: 10.1074/jbc.M006176200. [DOI] [PubMed] [Google Scholar]
  • 16.Limaye, V., Xia, P., Hahn, C., Smith, M., Vadas, M.A, Pitson, S.M. and Gamble, J.R. Chronic increases in sphingosine kinase-1 activity induce a pro-inflammatory, pro-angiogenic phenotype in endothelial cells. Cell. Mol. Biol. Lett.14 (2009) in press, DOI: 10.2478/s11658-009-0009-1. [DOI] [PMC free article] [PubMed]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES