Abstract
Anthocyanins are one of the main flavonoid groups. They are responsible for, e.g., the color of plants and have antioxidant features and a wide spectrum of medical activity. The subject of the study was the following compounds that belong to the anthocyanins and which can be found, e.g., in strawberries and chokeberries: callistephin chloride (pelargonidin-3-O-glucoside chloride) and ideain chloride (cyanidin-3-O-galactoside chloride). The aim of the study was to determine the compounds’ antioxidant activity towards the erythrocyte membrane and changes incurred by the tested anthocyanins in the lipid phase of the erythrocyte membrane, in liposomes composed of erythrocyte lipids and in DPPC, DPPC/cholesterol and egg lecithin liposomes. In particular, we studied the effect of the two selected anthocyanins on red blood cell morphology, on packing order in the lipid hydrophilic phase, on fluidity of the hydrophobic phase, as well as on the temperature of phase transition in DPPC and DPPC/cholesterol liposomes. Fluorimetry with the Laurdan and Prodan probes indicated increased packing density in the hydrophilic phase of the membrane in the presence of anthocyanins. Using the fluorescence probes DPH and TMA-DPH, no effect was noted inside the hydrophobic phase of the membrane, as the lipid bilayer fluidity was not modified. The compounds slightly lowered the phase transition temperature of phosphatidylcholine liposomes. The study has shown that both anthocyanins are incorporated into the outer region of the erythrocyte membrane, affecting its shape and lipid packing order, which is reflected in the increasing number of echinocytes. The investigation proved that the compounds penetrate only the outer part of the external lipid layer of liposomes composed of erythrocyte lipids, DPPC, DPPC/cholesterol and egg lecithin lipids, changing its packing order. Fluorimetry studies with DPH-PA proved that the tested anthocyanins are very effective antioxidants. The antioxidant activity of the compounds was comparable with the activity of Trolox®.
Key words: Anthocyanins, Fluorescent probes, Liposomes, Erythrocyte membrane, Echinocytes, DSC, Anisotropy, Generalized polarization, Phase transition
Full Text
The Full Text of this article is available as a PDF (631.4 KB).
Abbreviations used
- AAPH
2,2′-azobis(2-methylpropionamidine) dihydrochloride
- DPH
1,6-diphenyl-1,3,5-hexatriene
- DPH-PA
(1,6-diphenyl-1,3,5-hexatrienyl) propionic acid
- DPPC
1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine
- DSC
differential scanning calorimetry
- egg-PC
L-α-phosphatidylcholine from egg yolk
- GP
generalized polarization
- Laurdan
6-dodecanoyl-2-dimethylaminonaphthalene
- Prodan
6-propionyl-2-dimethylaminonaphthalene
- TMA-DPH
1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene p-toluenesulfonate
Footnotes
Paper authored by participant of the international conference: 18th Meeting, European Association for Red Cell Research, Wrocław — Piechowice, Poland, May 12–15th, 2011. Publication cost was covered by the organizers of this meeting.
References
- 1.Santos-Buelga, C., Escribano-Bailon, M.T. and Lattanzio, V. Recent advances in polyphenol research, Volume 2, Wiley-Blackwell, 2010, Oxford, UK.
- 2.Bridle P., Timberlake C.F. Anthocyanins as natural food colours - selected aspects. Food Chem. 1997;58:101–109. doi: 10.1016/S0308-8146(96)00222-1. [DOI] [Google Scholar]
- 3.Chen P.N., Chu S.C., Chiou H.L., Kuo W.H., Chiang C.L., Hsieh Y.S. Mulberry anthocyanins, cyaniding 3-rutinoside and cyaniding 3-glucoside, exhibited an inhibitory effect on the migration and invasion on human lung cancer cell line. Cancer Lett. 2006;235:248–259. doi: 10.1016/j.canlet.2005.04.033. [DOI] [PubMed] [Google Scholar]
- 4.Feng R., Ni N.M., Wang S.Y., Tourkova I.L., Shurin M.R., Harada H., Yin X.M. Cyanidin 3-rutinoside, a natural polyphenol antioxidant, selectively kills leukemic cells by induction of oxidative stress. J. Biol. Chem. 2007;282:13468–13476. doi: 10.1074/jbc.M610616200. [DOI] [PubMed] [Google Scholar]
- 5.Kong J.-M., Chia L.-S., Goh N.-K., Chia T.-F., Brouillard R. Analysis and biological activities of anthocyanins. Phytochemistry. 2003;64:923–933. doi: 10.1016/S0031-9422(03)00438-2. [DOI] [PubMed] [Google Scholar]
- 6.Galvano F., La Fauci L., Lazzarino G., Fogliano V., Ritieni A., Ciappellano S., Battistini N.C., Tavazzi B., Galvano G. Cyanidins: metabolism and biological properties. J. Nutr. Biochem. 2004;15:2–11. doi: 10.1016/j.jnutbio.2003.07.004. [DOI] [PubMed] [Google Scholar]
- 7.Wesołowska O., Kużdżał M., Štrancar J., Michalak K. Interaction of chemopreventive agent resveratrol and its metabolite piceatannol with model membranes. Biochim. Biophys. Acta. 2009;1788:1851–1860. doi: 10.1016/j.bbamem.2009.06.005. [DOI] [PubMed] [Google Scholar]
- 8.Gąsiorowski K., Szyba K., Brokos B., Kołaczyńska B., Jankowiak-Włodarczyk M., Oszmiański J. Antimutagenic activity of anthocyanins isolated from Aronia melanocarpa fruits. Cancer Lett. 1997;119:37–46. doi: 10.1016/S0304-3835(97)00248-6. [DOI] [PubMed] [Google Scholar]
- 9.Mudnic I., Modun D., Brizic I., Vukovic J., Generalic I., Katalinic V., Bilusic T., Ljubenkov I., Boban M. Cardiovascular effect in vitro of aqueous extract of wild strawberry (Fragaria vesca. L.) leaves. Phytomedicine. 2009;16:462–469. doi: 10.1016/j.phymed.2008.11.004. [DOI] [PubMed] [Google Scholar]
- 10.Zduńczyk Z., Frejnagel S., Wróblewska M., Juśkiewicz J., Oszmiański J., Estrella I. Biological activity of polyphenol extracts from different plant sources. Food Res. Int. 2002;35:183–186. doi: 10.1016/S0963-9969(01)00181-8. [DOI] [Google Scholar]
- 11.Stintzing, F.C. and Carle, R. Functional properties of anthocyanins and betalains in plants, food and in human nutrition. Trends Food Sci. Technol. 15 (2004) 19–38.
- 12.Kondo S., Yoshikawa H., Miwa N. Cytoprotective effect of fruit extracts associated with antioxidant activity against ultraviolet rays. Food Chem. 2007;104:1272–1276. doi: 10.1016/j.foodchem.2007.01.001. [DOI] [Google Scholar]
- 13.Gabrielska J., Oszmiański J., Komorowska M., Langner M. Anthocyanin extracts with antioxidant and radical scavenging effect. Z. Naturforsch. C. 1999;54:319–324. doi: 10.1515/znc-1999-5-605. [DOI] [PubMed] [Google Scholar]
- 14.Bukowska B., Michałowicz J., Krokosz A., Sicińska P. Comparison of the effect of phenol and its derivatives on protein and free radical formation in human erythrocytes (in vitro) Blood Cells Mol. Dis. 2007;39:238–244. doi: 10.1016/j.bcmd.2007.06.003. [DOI] [PubMed] [Google Scholar]
- 15.Chaudhuri S., Banerjee A., Basu K., Sengupta B., Sengupta P.K. Interaction of flavonoids with red blood cell membrane lipids and proteins: Antioxidant and antihemolytic effects. Int. J. Biol. Macromol. 2007;41:42–48. doi: 10.1016/j.ijbiomac.2006.12.003. [DOI] [PubMed] [Google Scholar]
- 16.Pawlikowska-Pawlęga B., Gruszecki W.I., Misiak L.E., Gawron A. The study of the quercetin action on human erythrocyte membranes. Biochem. Pharmacol. 2003;66:605–612. doi: 10.1016/S0006-2952(03)00344-7. [DOI] [PubMed] [Google Scholar]
- 17.Suwalsky M., Orellana P., Avello M., Villena F. Protective effect of Ugni molinae Turcz against oxidative damage of human erythrocytes. Food Chem. Toxicol. 2007;45:130–135. doi: 10.1016/j.fct.2006.08.010. [DOI] [PubMed] [Google Scholar]
- 18.Suwalsky M., Vargas P., Avello M., Villena F., Sotomayor C.P. Human erythrocytes are affected in vitro by flavonoids of Aristotelia chilensis (Maqui) leaves. Int. J. Pharm. 2008;363:85–90. doi: 10.1016/j.ijpharm.2008.07.005. [DOI] [PubMed] [Google Scholar]
- 19.Arora A., Byren T.M., Nair M.G., Strasburg G.M. Modulation of liposomal membrane fluidity by flavonoids and isoflavonoids. Arch. Biochem. Biophys. 2000;373:102–109. doi: 10.1006/abbi.1999.1525. [DOI] [PubMed] [Google Scholar]
- 20.Chaudhuri S., Biswapathik P., Sengupta P.K. Ground and excited state proton transfer and antioxidant activity of 7-hydroxyflavone in model membranes: Absorption and fluorescence spectroscopic studies. Biophys. Chem. 2009;139:29–36. doi: 10.1016/j.bpc.2008.09.018. [DOI] [PubMed] [Google Scholar]
- 21.Perez-Fons L., Garzon M.T., Micol V. Relationship between the antioxidant capacity and effect of rosemary (Rosmarinus officinalis L.) polyphenols on membrane phospholipid order. J. Agric. Food. Chem. 2010;58:161–171. doi: 10.1021/jf9026487. [DOI] [PubMed] [Google Scholar]
- 22.Bonarska-Kujawa D., Pruchnik H., Oszmiański J., Sarapuk J., Kleszczyńska H. Changes caused by fruit extracts in the lipid phase of biological and model membranes. Food Biophys. 2011;6:58–67. doi: 10.1007/s11483-010-9175-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Maddy A.H., Dunn M.J., Kelly P.G. The characterisation of membrane proteins by centrifugation and gel electrophoresis. A comparison of proteins prepared by different methods. Biochim. Biophys. Acta. 1972;288:263–278. doi: 10.1016/0005-2736(72)90247-7. [DOI] [PubMed] [Google Scholar]
- 24.Dodge J.T., Mitchell C., Hanahan D.J. The preparation and chemical characteristics of hemoglobin-free ghosts of erythrocytes. Arch. Biochem. 1963;100:119–130. doi: 10.1016/0003-9861(63)90042-0. [DOI] [PubMed] [Google Scholar]
- 25.Bradford M.M. Rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- 26.Deuticke, B. Membrane lipids and proteins as a basis of red cell shape and its alternations. In: Red Cell Membrane Transport in Health and Disease. (Bernhardt, I. and Ellory, J.C. Eds.). Springer 2003, 27–60.
- 27.Lakowicz J.R. Principles of Fluorescence Spectroscopy. New York. London: Plenum Press.; 2006. Fluorescence polarization; pp. 353–382. [Google Scholar]
- 28.Bagatolli L.A., Maggio B., Aguilar F., Sotomayor C.P., Fidelio G.D. Laurdan properties in glycosphingolipid-phospholipid mixtures: a comparative fluorescence and calorimetric study. Biochim. Biophys. Acta. 1997;1325:80–90. doi: 10.1016/S0005-2736(96)00246-5. [DOI] [PubMed] [Google Scholar]
- 29.Parasassi T., Krasnowska E.K., Bagatolli L., Gratton E. Laurdan and Prodan as polarity-sensitive fluorescent membrane probes. J. Fluoresc. 1998;8:365–373. doi: 10.1023/A:1020528716621. [DOI] [Google Scholar]
- 30.Iglic A., Kralj-Iglic V., Hagerstand V.H. Amphiphile induced echinocyte-spheroechinocyte transformation of red blood cell shape. Eur. Biophys. J. 1998;27:335–339. doi: 10.1007/s002490050140. [DOI] [PubMed] [Google Scholar]
- 31.Isomaa B., Hagerstrand H., Paatero G. Shape transformations induced by amphiphiles in erythrocytes. Biochim. Biophys. Acta. 1987;899:93–103. doi: 10.1016/0005-2736(87)90243-4. [DOI] [PubMed] [Google Scholar]
- 32.Sheetz M.P., Singer S.J. Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. Proc. Nat. Acad. Sci. USA. 1974;71:4457–4461. doi: 10.1073/pnas.71.11.4457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Harris F.M., Best K.B., Bell J.D. Use of Laurdan fluorescence intensity and polarization to distinguish between changes in membrane fluidity and phospholipid order. Biochim. Biophys. Acta. 2002;1565:123–128. doi: 10.1016/S0005-2736(02)00514-X. [DOI] [PubMed] [Google Scholar]
- 34.Dumas D., Muller S., Gouin F., Baros F., Viriot M.-L., Stoltz J.F. Membrane fluidity and oxygen diffusion in cholesterol-enriched erythrocyte membrane. Arch. Biochem. Biophys. 1997;341:34–39. doi: 10.1006/abbi.1997.9936. [DOI] [PubMed] [Google Scholar]
- 35.Tiera V.A.O., Winnik F.M., Tiera M.J. Interaction of amphiphilic derivatives of chitosan with DPPC (1,2-dipalmitoyl-sn-glycero-3- phosphocholine) J. Therm. Anal. Calorim. 2010;100:309–313. doi: 10.1007/s10973-009-0375-y. [DOI] [Google Scholar]
- 36.Arora A., Strasburg G.M. Development and validation of fluorescence spectroscopic assays to calculate antioxidant efficacy. J. Am. Oil Chem. Soc. 1997;74:1031–1040. doi: 10.1007/s11746-997-0021-4. [DOI] [Google Scholar]
- 37.Massey J.B. Interaction of ceramides with phosphatidylcholine, sphingomyelin and sphingomyelin/cholesterol bilayers. Biochim. Biophys. Acta. 2001;1510:167–184. doi: 10.1016/S0005-2736(00)00344-8. [DOI] [PubMed] [Google Scholar]