Abstract
In this study, we investigated apoptosis induced in human trisomic and diabetic fibroblasts by daunorubicin (DNR) and its derivative, idarubicin (IDA). The cells were incubated with DNR or IDA for 2 h and then cultured in a drug-free medium for a further 2–48 h. The apoptosis in the cultured cell lines was assessed by biochemical analysis. We found that both drugs induced a timedependent loss of mitochondrial membrane potential, and a significant increase in intracellular calcium and caspase-3 activity. Mitochondrial polarization and changes in the level of intracellular calcium were observed during the first 2–6 h after drug treatment. Caspase-3 activation occurred in the late stages of the apoptotic pathway. Our findings also demonstrated that idarubicin was more cytotoxic and more effective than daunorubicin in inducing apoptosis in trisomic and diabetic fibroblasts.
Key words: Daunorubicin, Idarubicin, Apoptosis, Fibroblasts, Down’s syndrome, Diabetes
Full Text
The Full Text of this article is available as a PDF (500.2 KB).
Abbreviations used
- DiOC6(3)
3,3′-dihexyloxycarbocyanin iodide
- DNR
daunorubicin
- DS
Down’s syndrome
- IC50
the drug concentration that reduces cell growth to 50% of that of the control cells
- IDA
idarubicin
- MTT
3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl tetrazolium bromide
- PBS
phosphate buffered saline
- Z-(DEVD-AMC)
Z-(Asp-Glu-Val-Asp)-7-amido-4-methylcoumarin
- ΔΨm
mitochondrial membrane potential
References
- 1.Goebel M. Oral idarubicin-an anthracycline derivative with unique properties. Ann. Hematol. 1993;66:33–43. doi: 10.1007/BF01737687. [DOI] [PubMed] [Google Scholar]
- 2.Berman E., McBride M. Comparative cellular pharmacology of daunorubicin and idarubicin in human multidrug-resistant leukemia cells. Blood. 1992;79:3267–3273. [PubMed] [Google Scholar]
- 3.Mazue G., Iatropoulos M., Imondi A., Castellino S., Brughera M., Podesta A., Della Torre P., Moneta D. Anthracyclines: A review of general and special toxicity studies. Int. J. Oncol. 1995;7:713–726. [PubMed] [Google Scholar]
- 4.Quillet-Mary A., Mansat V., Duchayne E., Come M.G., Allouche M., Bailly J.D., Bordier C., Laurent G. Daunorubicin-induced internucleosomal DNA fragmentation in acute myeloid cell lines. Leukemia. 1996;10:417–425. [PubMed] [Google Scholar]
- 5.Masquelier M., Zhou Q.F., Gruber A., Vitols S. Relationship between daunorubicin concentration and apoptosis induction in leukemic cells. Biochem. Pharmacol. 2004;67:1047–1058. doi: 10.1016/j.bcp.2003.10.025. [DOI] [PubMed] [Google Scholar]
- 6.Chen J.-S., Chai M.-Q., Chen H., Zhao S., Song J. Regulation of phospholipase D activity and ceramide production in daunorubicin-induced apoptosis in A-431 cells. Biochim. Biophys. Acta. 2000;1488:219–232. doi: 10.1016/s1388-1981(00)00125-6. [DOI] [PubMed] [Google Scholar]
- 7.Gervasoni J.E., Hindenburg A., Vezeridis M., Shulze S., Wanebo H.J., Mehta S. An effective in vitro antitumor response against human pancreatic carcinoma with paclitaxel and daunorubicin by induction of both necrosis and apoptosis. Anticancer Res. 2004;24:2617–2626. [PubMed] [Google Scholar]
- 8.Liu F.T., Kelsey S.M., Newland A.C., Jia L. Generation of reactive oxygen species is not involved in idarubicin-induced apoptosis in human leukaemic cells. Br. J. Haematol. 2001;115:817–825. doi: 10.1046/j.1365-2141.2001.03216.x. [DOI] [PubMed] [Google Scholar]
- 9.Willmore E., Errington F., Tilby M.J., Austin C.A. Formation and longevity of idarubicin-induced DNA topoisomerase II cleavable complexes in K562 human leukaemia cells. Biochem. Pharmacol. 2002;63:1807–1815. doi: 10.1016/S0006-2952(02)00920-6. [DOI] [PubMed] [Google Scholar]
- 10.Pytel D., Wysocki T., Majsterek J. Comparative study of DNA damage, cell cycle and apoptosis in human K562 and CCRF-CEM leukemia cells: Role of BCR/ABL in therapeutic resistance. Comp. Biochem. Physiol. Part C. 2006;144:85–92. doi: 10.1016/j.cbpc.2006.06.010. [DOI] [PubMed] [Google Scholar]
- 11.Vermeulen K., van Bockstaele D.K., Berneman Z.N. Apoptosis: mechanisms and relevance in cancer. Ann. Hematol. 2005;84:627–639. doi: 10.1007/s00277-005-1065-x. [DOI] [PubMed] [Google Scholar]
- 12.Jabs T. Reactive oxygen intermediates as mediators of programmed cell death in plants and animals. Biochem. Pharmacol. 1999;57:231–245. doi: 10.1016/S0006-2952(98)00227-5. [DOI] [PubMed] [Google Scholar]
- 13.Robertson P.P., Harmon J.S. Diabetes, glucose toxicity, and oxidative stress: A case of double jeopardy for the pancreatic islet β cell. Free Radic. Biol. Med. 2006;41:177–184. doi: 10.1016/j.freeradbiomed.2005.04.030. [DOI] [PubMed] [Google Scholar]
- 14.Zatorska A., Maszewski J., Jóźwiak Z. Changes in GSH-antioxidant system induced by daunorubicin in human normal and diabetic fibroblasts. Acta Biochim. Pol. 2003;50:825–835. [PubMed] [Google Scholar]
- 15.Kiyomiya K., Matsuo S., Kurebe M. Proteasome is a carrier to translocate doxorubicin from cytoplasm into nucleus. Life Sci. 1998;62:1853–1860. doi: 10.1016/S0024-3205(98)00151-9. [DOI] [PubMed] [Google Scholar]
- 16.Özgen U., Savasan S., Buck S., Ravindranath Y. Comparison of DiOC6(3) uptake and annexin V labeling for quantification of apoptosis in leukemia cells and non-malignant T lymphocytes from children. Cytometry. 2000;42:74–78. doi: 10.1002/(SICI)1097-0320(20000215)42:1<74::AID-CYTO11>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
- 17.Mulvaney J.M., Zhang T., Fewtrell C., Roberson M.S. Calcium influx through L-type channels is required for selective activation of extracellular signal-regulated kinase by gonadotropin-releasing hormone. J. Biol. Chem. 1999;274:29796–29804. doi: 10.1074/jbc.274.42.29796. [DOI] [PubMed] [Google Scholar]
- 18.Kania K., Dragojew S., Jóźwiak Z. Morphological and biochemical changes in human fibroblast lines induced by anthracyclines during apoptosis. Cell. Mol. Biol. Lett. 2003;8:121–126. [PubMed] [Google Scholar]
- 19.Hasle H. Pattern of malignant disorders in individuals with Down’s syndrome. Lancet Oncol. 2001;2:429–436. doi: 10.1016/S1470-2045(00)00435-6. [DOI] [PubMed] [Google Scholar]
- 20.Przybylska M., Koceva-Chyła A., Rózga B., Jóźwiak Z. Cytotoxicity of daunorubicin in trisomic (+21) human fibroblasts: Relation to drug uptake and cell membrane fluidity. Cell Biol. Int. 2001;25:157–170. doi: 10.1006/cbir.2000.0583. [DOI] [PubMed] [Google Scholar]
- 21.Jędrzejczak M., Koceva-Chyła A., Gwoździński K., Jóźwiak Z. Changes in plasma membrane fluidity of immortal rodent cells induced by anticancer drugs doxorubicin, aclarubicin and mitoxantrone. Cell Biol. Int. 1999;23:497–506. doi: 10.1006/cbir.1999.0399. [DOI] [PubMed] [Google Scholar]
- 22.Huigsloot M., Tijdens I.B., Mulder G.J., van de Water B. Differential regulation of doxorubicin-induced mitochondrial dysfunction and apoptosis by Bcl-2 in mammary adenocarcinoma (MTLn3) cells. J. Biol. Chem. 2002;277:35869–35879. doi: 10.1074/jbc.M200378200. [DOI] [PubMed] [Google Scholar]
- 23.Hanada M., Noguchi T., Yamaoka T. Amrubicin induces apoptosis in human tumor cells mediated by the activation of caspase-3/7 preceding a loss of mitochondrial membrane potential. Cancer Sci. 2006;97:1396–1403. doi: 10.1111/j.1349-7006.2006.00318.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Ray S.K., Fidan M., Nowak M.W., Wilford G.G., Hogan E.L., Banik N.L. Oxidative stress and Ca2+ influx upregulate calpain and induce apoptosis in PC 12 cells. Brain Res. 2000;852:326–334. doi: 10.1016/S0006-8993(99)02148-4. [DOI] [PubMed] [Google Scholar]
- 25.McConkey D.J., Orrenius S. The role of calcium in regulation of apoptosis. Biochem. Biophys. Res. Commun. 1997;239:357–366. doi: 10.1006/bbrc.1997.7409. [DOI] [PubMed] [Google Scholar]
- 26.Mathiasen I.S., Sergeev I.N., Bastholm L., Elling F., Norman A.W., Jaattela M. Calcium and calpain as key mediators of apoptosis-like death induced by vitamin D compounds in breast cancer cells. J. Biol. Chem. 2002;277:30738–30745. doi: 10.1074/jbc.M201558200. [DOI] [PubMed] [Google Scholar]
- 27.Turnbull K.J., Brown B.L., Dobson P.R. Caspase-3-like activity is necessary but not sufficient for daunorubicin induced apoptosis in Jurkat human lymphoblastic leukemia cells. Leukemia. 1999;13:1056–1061. doi: 10.1038/sj/leu/2401438. [DOI] [PubMed] [Google Scholar]
- 28.Bellarosa D., Ciucci A., Bullo A., Nardelli F., Manzini S., Maggi C.A., Goso C. Apoptotic events in a human ovarian cancer cell line exposed to anthracyclines. J. Pharmacol. Exp. Ther. 2001;296:276–283. [PubMed] [Google Scholar]
- 29.Dartsch D.C., Schaefer A., Boldt S., Kolch W., Marquardt H. Comparison of anthracycline-induced death of human leukemia cells: Programmed cell death versus necrosis. Apoptosis. 2002;7:537–548. doi: 10.1023/A:1020647211557. [DOI] [PubMed] [Google Scholar]
- 30.Anneren G., Epstein C.J. Lipid peroxidation and superoxide dismutase-1 and glutathione peroxidase activities in trisomy 16 fetal mice and human trisomy 21 fibroblasts. Pediatr. Res. 1987;21:88–92. doi: 10.1203/00006450-198701000-00019. [DOI] [PubMed] [Google Scholar]
- 31.Zatorska A., Jóźwiak Z. Involvement of glutathione and glutathione related enzymes in the protection of normal and trisomic human fibroblasts against daunorubicin. Cell. Biol. Int. 2002;26:383–391. doi: 10.1006/cbir.2002.0861. [DOI] [PubMed] [Google Scholar]
- 32.Pelsman A., Hoyo-Vadillo C., Gudasheva T.A., Seredenin S.B., Ostrovskaya R.U., Busciglio J. GVS-111 prevents oxidative damage and apoptosis in normal and Down’s syndrome human cortical neurons. Int. J. Dev. Neurosci. 2003;21:117–124. doi: 10.1016/S0736-5748(03)00031-5. [DOI] [PubMed] [Google Scholar]
- 33.Anderson A.J., Stoltzner S., Lai F., Su J., Nixon R.A. Morphological and biochemical assessment of DNA damage and apoptosis in Down syndrome and Alzheimer disease, and effect of postmortem tissue archival on TUNEL. Neurobiol. Aging. 2000;21:511–524. doi: 10.1016/S0197-4580(00)00126-3. [DOI] [PubMed] [Google Scholar]
- 34.Busciglio J., Yanker B.A. Apotosis and increased generation of reactive oxygen species in Down’s syndrome neurons in vitro. Nature. 1995;378:776–779. doi: 10.1038/378776a0. [DOI] [PubMed] [Google Scholar]
- 35.Paz-Miguel J.E., Flores R., Sanchez-Velasco P., Ocejo-Vinyals G., de Diego J.E., de Rego J., Leyva-Cobian F. Reactive oxygen intermediates during programmed cell death induced in the thymus of the Ts(1716)65Dn mouse, a murine model for human Down’s syndrome. J. Immunol. 1999;163:5399–5410. [PubMed] [Google Scholar]
- 36.Gulesserian T., Engidawork E., Yoo B.C., Cairns N., Lubec G. Alteration of caspases and other apoptosis regulatory proteins in Down syndrome. J. Neural. Transm. 2001;61:163–179. doi: 10.1007/978-3-7091-6262-0_13. [DOI] [PubMed] [Google Scholar]
- 37.Mohr S., Xi X., Tang J., Kern T.S. Caspase activation in retinas of diabetic and galactosemic mice and diabetic patients. Diabetes. 2002;51:1172–1179. doi: 10.2337/diabetes.51.4.1172. [DOI] [PubMed] [Google Scholar]
- 38.Cai L., Li W., Wang G.W., Guo L.P., Jiang Y.C., Kang Y.J. Hyperglycemia-induced apoptosis in mouse myocardium-mitochondrial cytochrome c — mediated caspase-3 activation pathway. Diabetes. 2002;51:1938–1948. doi: 10.2337/diabetes.51.6.1938. [DOI] [PubMed] [Google Scholar]
- 39.Schmeichel A.M., Schmelzer J.D., Low P.A. Oxidative injury and apoptosis of dorsal root ganglion neurons in chronic experimental diabetic neuropathy. Diabetes. 2003;52:165–171. doi: 10.2337/diabetes.52.1.165. [DOI] [PubMed] [Google Scholar]
- 40.Roat E., Prada N., Ferraresi R., Giovenzana Ch., Nasi M., Troiano L., Pinti M., Nemes E., Lugli E., Biagioni O., Mariotti M., Ciacci L., Consolo U., Balli F., Cossarizza A. Mitochondrial alterations and tendency to apoptosis in peripheral blood cells from children with Down syndrome. FEBS Lett. 2007;581:521–525. doi: 10.1016/j.febslet.2006.12.058. [DOI] [PubMed] [Google Scholar]