Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2011 May 25;16(3):398–411. doi: 10.2478/s11658-011-0013-0

Exploring the binding dynamics of BAR proteins

Doron Kabaso 1,, Ekaterina Gongadze 2, Jernej Jorgačevski 3,4, Marko Kreft 3,4, Ursula Van Rienen 2, Robert Zorec 3,4, Aleš Iglič 1
PMCID: PMC6275656  PMID: 21614490

Abstract

We used a continuum model based on the Helfrich free energy to investigate the binding dynamics of a lipid bilayer to a BAR domain surface of a crescent-like shape of positive (e.g. I-BAR shape) or negative (e.g. F-BAR shape) intrinsic curvature. According to structural data, it has been suggested that negatively charged membrane lipids are bound to positively charged amino acids at the binding interface of BAR proteins, contributing a negative binding energy to the system free energy. In addition, the cone-like shape of negatively charged lipids on the inner side of a cell membrane might contribute a positive intrinsic curvature, facilitating the initial bending towards the crescent-like shape of the BAR domain. In the present study, we hypothesize that in the limit of a rigid BAR domain shape, the negative binding energy and the coupling between the intrinsic curvature of negatively charged lipids and the membrane curvature drive the bending of the membrane. To estimate the binding energy, the electric potential at the charged surface of a BAR domain was calculated using the Langevin-Bikerman equation. Results of numerical simulations reveal that the binding energy is important for the initial instability (i.e. bending of a membrane), while the coupling between the intrinsic shapes of lipids and membrane curvature could be crucial for the curvature-dependent aggregation of negatively charged lipids near the surface of the BAR domain. In the discussion, we suggest novel experiments using patch clamp techniques to analyze the binding dynamics of BAR proteins, as well as the possible role of BAR proteins in the fusion pore stability of exovesicles.

Electronic Supplementary Material

Supplementary material is available for this article at 10.2478/s11658-011-0013-0 and is accessible for authorized users.

Key words: BAR proteins, Binding dynamics, Patch clamp, Charged lipids, Intrinsic shape

Full Text

The Full Text of this article is available as a PDF (1,013.2 KB).

Abbreviations used

BAR

Bin/Amphiphysin/Rvs

IRSp53

insulin receptor tyrosine kinase substrate p53

References

  • 1.Farsad K., Ringstad N., Takei K., Floyd S.R., Rose K., De Camilli P. Generation of high curvature membranes mediated by direct endophilin bilayer interactions. J. Cell Biol. 2001;105:193–200. doi: 10.1083/jcb.200107075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Tarricone C., Xiao B., Justin N., Walker P.A., Rittinger K., Gamblin S.J., Smerdon S.J. The structural basis of Arfaptin-mediated cross-talk between Rac and Arf signalling pathways. Nature. 2001;411:215–219. doi: 10.1038/35075620. [DOI] [PubMed] [Google Scholar]
  • 3.Zimmerberg Y.J., Kozlov M.M. How proteins produce cellular curvature. Nat. Rev. Mol. Cell Biol. 2006;7:9–19. doi: 10.1038/nrm1784. [DOI] [PubMed] [Google Scholar]
  • 4.Veksler A., Gov N.S. Phase transitions of the coupled membranecytoskeleton modify cellular shape. Biophys. J. 2007;11:3798–3810. doi: 10.1529/biophysj.107.113282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Frost A., Unger V.M., De Camilli P. The BAR Domain Superfamily: Membrane-Molding Macromolecules. Cell. 2009;137:191–196. doi: 10.1016/j.cell.2009.04.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Wang Q., Navarro M.V., Peng G., Molinelli E., Lin-Goh S., Judson B.L., Rajashankar K.R., Sondermann H. Molecular mechanism of membrane constriction and tubulation mediated by the F-BAR protein Pacsin/Syndapin. Proc. Nat. Acad. Sci. USA. 2009;106:12700–12705. doi: 10.1073/pnas.0902974106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Peter B.J., Kent H.M., Mills I.G., Vallis Y., Butler P.J., Evans P.R., McMahon H.T. BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science. 2004;303:495–499. doi: 10.1126/science.1092586. [DOI] [PubMed] [Google Scholar]
  • 8.Itoh T., De Camilli P. BAR, F-BAR (EFC) and ENTH/ANTH domains in the regulation of membrane-cytosol interfaces and membrane curvature. Biochim. Biophys. Acta. 2006;1761:897–912. doi: 10.1016/j.bbalip.2006.06.015. [DOI] [PubMed] [Google Scholar]
  • 9.Heath R.J.W., Insall R.H. F-BAR domains: multifunctional regulators of membrane curvature. J. Cell Sci. 2008;121:1951–1954. doi: 10.1242/jcs.023895. [DOI] [PubMed] [Google Scholar]
  • 10.Shimada A., Takano K., Shirouzu M., Hanawa-Suetsugu K., Terada T., Toyooka K., Umehara T., Yamamoto M., Yokoyama S., Suetsugu S. Mapping of the basic amino-acid residues responsible for tubulation and cellular protrusion by the EFC/F-BAR domain of pacsin2/syndapin II. FEBS Lett. 2010;584:1111–1118. doi: 10.1016/j.febslet.2010.02.058. [DOI] [PubMed] [Google Scholar]
  • 11.Zimmerberg J., McLaughlin S. Membrane curvature: How BAR domains bend bilayers. Curr. Biol. 2004;14:250–252. doi: 10.1016/j.cub.2004.02.060. [DOI] [PubMed] [Google Scholar]
  • 12.Iglič A., Slivnik T., Kralj-Iglič V. Elastic properties of biological membranes influenced by attached proteins. J. Biomech. 2007;40:2492–2500. doi: 10.1016/j.jbiomech.2006.11.005. [DOI] [PubMed] [Google Scholar]
  • 13.Kabaso D., Shlomovitz R., Auth T., Lew V.L., Gov N.S. Curling and local shape changes of red blood cell membranes driven by cytoskeletal reorganization. Biophys. J. 2010;99:808–816. doi: 10.1016/j.bpj.2010.04.067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Kabaso, D., Gongadze, E., Perutkova, S., Kralj-Iglič, V., Matschegewski, C., Beck, U., van Rienen, U. and Iglič, A. Mechanics and electrostatics of the interactions between osteoblasts and titanium surface. Comp. Meth. Biomech. Biomed. Eng. (2011) in print. [DOI] [PubMed]
  • 15.Kabaso D., Lokar M., Kralj-Iglič V., Veranič P., Iglič A. Temperature, cholera toxin-B and degree of malignant transformation are factors that influence formation of membrane nanotubes in urothelial cancer cell line. Int. J. Nanomed. 2011;6:495–509. doi: 10.2147/IJN.S16982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Kralj-Iglič V., Heinrich V., Svetina S., Zeks B. Free energy of closed membrane with anisotropic inclusions. Eur. Phys. J. B. 1999;10:5–8. doi: 10.1007/s100510050822. [DOI] [Google Scholar]
  • 17.Božič B., Kralj-Iglič V., Svetina S. Coupling between vesicle shape and lateral distribution of mobile membrane inclusion. Phys. Rev. E. 2006;73:041915. doi: 10.1103/PhysRevE.73.041915. [DOI] [PubMed] [Google Scholar]
  • 18.Cai W., Lubensky T.C. Covariant hydrodynamics of fluid membranes. Phys. Rev. Lett. 1994;73:1186–1189. doi: 10.1103/PhysRevLett.73.1186. [DOI] [PubMed] [Google Scholar]
  • 19.Helfrich W. Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. C. 1973;28:693–703. doi: 10.1515/znc-1973-11-1209. [DOI] [PubMed] [Google Scholar]
  • 20.Gongadze, E., van Rienen, U., Kralj-Iglič, V. and Iglič, A. Langevin Poisson-Boltzmann equation: point-like ions and water dipoles near charged membrane surface. Gen. Physiol. Biophys.30 (2011) in print. [DOI] [PubMed]
  • 21.Iglič A., Gongadze E., Bohinc K. Excluded volume effect and orientational ordering near charged surface in solution of ions and Langevin dipoles. Bioelectrochemistry. 2010;79:223–227. doi: 10.1016/j.bioelechem.2010.05.003. [DOI] [PubMed] [Google Scholar]
  • 22.Gongadze, E, Bohinc, K., van Rienen, U., Kralj-Iglič, V. and Iglič, A. Spatial variation of permittivity near a charged membrane in contact with electrolyte solution, in: Advances in planar lipid bilayers and liposomes (Iglič, A. Ed.) 11th volume, Elsevier, 2010, 101–126.
  • 23.Hamill O., Marty A., Neher E., Sakmann B., Sigworth F. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Eur. J. Phys. 1981;391:85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  • 24.Hille, B. Gating Mechanisms: Kinetic Thinking. In: Ionic Channels of Excitable Membranes (1992) 575–603.
  • 25.Sikdar S.K., Zorec R., Mason W.T. cAMP directly facilitates Cainduced exocytosis in bovine lactotrophs. FEBS Lett. 1990;273:150–154. doi: 10.1016/0014-5793(90)81072-V. [DOI] [PubMed] [Google Scholar]
  • 26.Rupnik M., Zorec R. Cytosolic chloride ions stimulate Ca2+-induced exocytosis in melanotrophs. FEBS Lett. 1992;303:221–223. doi: 10.1016/0014-5793(92)80524-K. [DOI] [PubMed] [Google Scholar]
  • 27.Kreft M., Zorec R. Cell-attached measurements of attofarad capacitance steps in rat melanotrophs. Pflügers Archiv. 1997;434:212–214. doi: 10.1007/s004240050387. [DOI] [PubMed] [Google Scholar]
  • 28.Fosnaric M., Iglič A., Kroll D., May S. Monte Carlo simulations of complex formation between a mixed fluid vesicle and a charged colloid. J. Chem. Phys. 2009;131:105103. doi: 10.1063/1.3191782. [DOI] [Google Scholar]
  • 29.Khelashvili G., Harries D., Weinstein H. Modeling membrane deformations and lipid demixing upon protein-membrane interaction: The BAR dimer adsorption. Biophys. J. 2009;97:1626–1635. doi: 10.1016/j.bpj.2009.07.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Jorgačevski J., Fošnarič M., Vardjan N., Stenovec M., Potokar M., Kreft M., Kralj-Iglič V., Iglič A., Zorec R. Fusion pore stability of peptidergic vesicles. Mol. Membr. Biol. 2010;27:65–80. doi: 10.3109/09687681003597104. [DOI] [PubMed] [Google Scholar]
  • 31.Neher E., Marty A. Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc. Natl. Acad. Sci. USA. 1982;79:6712–6716. doi: 10.1073/pnas.79.21.6712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Darios F., Wasser C., Shakirzyanova A., Giniatullin A., Goodman K., Munoz-Bravo J.L., Raingo J., Jorgacevski J., Kreft M., Zorec R., Rosa J.M., Gandia L., Gutirrez L.M., Binz T., Giniatullin R., Kavalali E.T., Davletov B. Sphingosine facilitates SNARE complex assembly and activates synaptic vesicle exocytosis. Neuron. 2009;62:683–694. doi: 10.1016/j.neuron.2009.04.024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Blood P., Voth G. Direct observation of bin/amphiphysin/rvs (BAR) domain-induced membrane curvature by means of molecular dynamics simulations. Proc. Nat. Acad. Sci. USA. 2006;103:15068–15072. doi: 10.1073/pnas.0603917103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Kabaso D., Gongadze E., Elter P., van Rienen U., Gimsa J., Kralj-Iglič V., Iglič A. Attachment of rod-like (BAR) proteins and membrane shape. Mini Rev. Med. Chem. 2011;11:272–282. doi: 10.2174/138955711795305353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Lobasso S., Saponetti M.S., Polidoro F., Lopalco P., Urbanija J., Kralj-Iglič V., Corcelli A. Archaebacterial lipid membranes as models to study the interaction of 10-N-nonyl acridine orange with phospholipids. Chem. Phys. Lipids. 2009;157:12–20. doi: 10.1016/j.chemphyslip.2008.09.002. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

11658_2011_13_MOESM1_ESM.pdf (361.6KB, pdf)

Supplementary material, approximately 361 KB.


Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES