Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2008 Mar 18;13(3):391–403. doi: 10.2478/s11658-008-0005-x

Identification of the DNA binding element of the human ZNF300 protein

Hongling Qiu 1, Lu Xue 1, Li Gao 1, Huanjie Shao 1, Di Wang 1, Mingxiong Guo 1, Wenxin Li 1,
PMCID: PMC6275660  PMID: 18350257

Abstract

The human ZNF300 gene is a member of the KRAB/C2H2 zinc finger gene family, the members of which are known to be involved in various developmental and pathological processes. Here, we show that the ZNF300 gene encodes a 68-kDa nuclear protein that binds DNA in a sequence-specific manner. The ZNF300 DNA binding site, C(t/a)GGGGG(c/g)G, was defined via a random oligonucleotide selection assay, and the DNA binding site was further confirmed by electrophoretic mobility shift assays. A potential ZNF300 binding site was found in the promoter region of the human IL-2Rβ gene. The results of electrophoretic mobility shift assays indicated that ZNF300 bound to the ZNF300 binding site in the IL-2Rβ promoter in vitro. Transient co-transfection assays showed that ZNF300 could activate the IL-2Rβ promoter, and that the activation was abrogated by the mutation of residues in the ZNF300 binding site. Identifying the DNA binding site and characterizing the transcriptional regulation property of ZNF300 would provide critical insights into its potential as a transcriptional regulator.

Key words: ZNF300, Zinc finger, DNA binding

Full Text

The Full Text of this article is available as a PDF (746.0 KB).

Abbreviations used

EMSA

electrophoretic mobility shift assay

IL-2Rβ

IL-2 receptor beta chain

KRAB

Krüppel-associated box

TK

thymidine kinase

ZNF300

zinc finger 300

References

  • 1.Schuh R., Aicher W., Gaul U., Cote S., Preiss A., Maier D., Seifert E., Nauber U., Schroder C., Kemler R. A conserved family of nuclear proteins containing structural elements of the finger protein encoded by Kruppel, a Drosophila segmentation gene. Cell. 1986;47:1025–1032. doi: 10.1016/0092-8674(86)90817-2. [DOI] [PubMed] [Google Scholar]
  • 2.Dai K.S., Liew C.C. Chromosomal, in silico and in vitro expression analysis of cardiovascular-based genes encoding zinc finger proteins. J. Mol. Cell. Cardiol. 1999;31:1749–1769. doi: 10.1006/jmcc.1999.1011. [DOI] [PubMed] [Google Scholar]
  • 3.Decker E.L., Nehmann N., Kampen E., Eibel H., Zipfel P.F., Skerka C. Early growth response proteins (EGR) and nuclear factors of activated T cells (NFAT) form heterodimers and regulate proinflammatory cytokine gene expression. Nucleic Acids Res. 2003;31:911–921. doi: 10.1093/nar/gkg186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Gou D.M., Wang J., Gao L., Sun Y., Peng X., Huang J., Li W.X. Identification and functional analysis of a novel human KRAB/C2H2 zinc finger gene ZNF300. Biochim. Biophys. Acta. 2004;1676:203–209. doi: 10.1016/j.bbaexp.2003.11.011. [DOI] [PubMed] [Google Scholar]
  • 5.Sharon M., Gnarra J.R., Leonard W.J. A 100-kilodalton protein is associated with the murine interleukin 2 receptor: biochemical evidence that p100 is distinct from the alpha and beta chains. Proc. Natl. Acad. Sci. USA. 1990;87:4869–4873. doi: 10.1073/pnas.87.12.4869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Suzuki H., Duncan G.S., Takimoto H., Mak T.W. Abnormal development of intestinal intraepithelial lymphocytes and peripheral natural killer cells in mice lacking the IL-2 receptor beta chain. J. Exp. Med. 1997;185:499–505. doi: 10.1084/jem.185.3.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Suzuki H., Kundig T.M., Furlonger C., Wakeham A., Timms E., Matsuyama T., Schmits R., Simard J.J., Ohashi P.S., Griesser H. Deregulated T-cell activation and autoimmunity in mice lacking interleukin-2 receptor beta. Science. 1995;268:1472–1476. doi: 10.1126/science.7770771. [DOI] [PubMed] [Google Scholar]
  • 8.Espinoza-Delgado I., Ortaldo J.R., Winkler-Pickett R., Sugamura K., Varesio L., Longo D.L. Expression and role of p75 interleukin 2 receptor on human monocytes. J. Exp. Med. 1990;171:1821–1826. doi: 10.1084/jem.171.5.1821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Pierrou S., Enerback S., Carlsson P. Selection of high-affinity binding sites for sequence-specific, DNA binding proteins from random sequence oligonucleotides. Anal. Biochem. 1995;229:99–105. doi: 10.1006/abio.1995.1384. [DOI] [PubMed] [Google Scholar]
  • 10.Zweidler-Mckay P.A., Grimes H.L., Flubacher M.M., Tsichlis P.N. Gfi-1 encodes a nuclear zinc finger protein that binds DNA and functions as a transcriptional repressor. Mol. Cell. Biol. 1996;16:4024–4034. doi: 10.1128/mcb.16.8.4024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Kim J.C., Yoon J.B., Koo H.S., Chung I.K. Cloning and characterization of the 5′-flanking region for the human topoisomerase III gene. J. Biol. Chem. 1998;273:26130–26137. doi: 10.1074/jbc.273.40.26130. [DOI] [PubMed] [Google Scholar]
  • 12.Wolfe S.A., Nekludova L., Pabo C.O. DNA recognition by Cys2His2 zinc finger proteins. Annu. Rev. Biophys. Biomol. Struct. 2000;29:183–212. doi: 10.1146/annurev.biophys.29.1.183. [DOI] [PubMed] [Google Scholar]
  • 13.Mendez-Vidal C., Wilhelm M.T., Hellborg F., Qian W., Wiman K.G. The p53-induced mouse zinc finger protein wig-1 binds double-stranded RNA with high affinity. Nucleic Acids Res. 2002;30:1991–1996. doi: 10.1093/nar/30.9.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Finerty P.J., Jr., Bass B.L. A Xenopus zinc finger protein that specifically binds dsRNA and RNA-DNA hybrids. J. Mol. Biol. 1997;271:195–208. doi: 10.1006/jmbi.1997.1177. [DOI] [PubMed] [Google Scholar]
  • 15.O’Neill E.A., Fletcher C., Burrow C.R., Heintz N., Roeder R.G., Kelly T.J. Transcription factor OTF-1 is functionally identical to the DNA replication factor NF-III. Science. 1988;241:1210–1213. doi: 10.1126/science.3413485. [DOI] [PubMed] [Google Scholar]
  • 16.Lin J.X., Bhat N.K., John S., Queale W.S., Leonard W.J. Characterization of the human interleukin-2 receptor beta-chain gene promoter: regulation of promoter activity by ets gene products. Mol. Cell. Biol. 1993;13:6201–6210. doi: 10.1128/mcb.13.10.6201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Wang S., Liu S., Wu M.H., Geng Y., Wood C. Identification of a cellular protein that interacts and synergizes with the RTA (ORF50) protein of Kaposi’s sarcoma-associated herpesvirus in transcriptional activation. J. Virol. 2001;75:11961–11973. doi: 10.1128/JVI.75.24.11961-11973.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Qi X., Li Y., Xiao J., Yuan W., Yan Y., Wang Y., Liang S., Zhu C., Chen Y., Liu M., Wu X. Activation of transcriptional activities of AP-1 and SRE by a new zinc-finger protein ZNF641. Biochem. Biophys. Res. Commun. 2006;339:1155–1164. doi: 10.1016/j.bbrc.2005.11.124. [DOI] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES