Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2009 Feb 12;14(3):395–410. doi: 10.2478/s11658-009-0010-8

Interactions between canthaxanthin and lipid membranes — possible mechanisms of canthaxanthin toxicity

Agnieszka Sujak 1,
PMCID: PMC6275664  PMID: 19214394

Abstract

Canthaxanthin (β, β-carotene 4, 4′ dione) is used widely as a drug or as a food and cosmetic colorant, but it may have some undesirable effects on human health, mainly caused by the formation of crystals in the macula lutea membranes of the retina. This condition is called canthaxanthin retinopathy. It has been shown that this type of dysfunction of the eye is strongly connected with damage to the blood vessels around the place of crystal deposition. This paper is a review of the experimental data supporting the hypothesis that the interactions of canthaxanthin with the lipid membranes and the aggregation of this pigment may be the factors enhancing canthaxanthin toxicity towards the macula vascular system. All the results of the experiments that have been done on model systems such as monolayers of pure canthaxanthin and mixtures of canthaxanthin and lipids, oriented bilayers or liposomes indicate a very strong effect of canthaxanthin on the physical properties of lipid membranes, which may explain its toxic action, which leads to the further development of canthaxanthin retinopathy.

Key words: Canthaxanthin, Retinopathy, Macula lutea, Model lipid membranes, Molecular interactions

Full Text

The Full Text of this article is available as a PDF (741.9 KB).

Abbreviation

AMD

age-related macular degeneration

DHPC

1,2 dihexanoyl-sn-glycero-3-phosphocholine

DMPC

dimyristoyl-phosphatidylcholine

DMPE

1, 2-diacyl-sn-glycero-3-phosphoethanolamine

DPPC

dipalmitoyl-phosphatidylcholine

DSPC

distearoyl-phosphatidylcholine

EYPC

egg yolk phosphatidylcholine

FTIR

Fourier transform ultra red

GSTP

glutathione S-transferase, zeaxanthin-binding protein

NMR

nuclear magnetic resonance

qlLBP

lutein-binding protein

RPE

retinal pigment epithelial cell

XBP

xanthophyll-binding protein

References

  • 1.Harnois C., Samson J., Malenfant M., Rousseau A. Canthaxanthin retinopathy. Anatomic and functional reversibility. Arch. Ophtalmol. 1989;107:538–540. doi: 10.1001/archopht.1989.01070010552029. [DOI] [PubMed] [Google Scholar]
  • 2.Bloomenstein M.R., Pinkert R.B. Canthaxanthine retinopathy. J. Am. Optom. Assoc. 1996;67:690–692. [PubMed] [Google Scholar]
  • 3.McGuinnes R., Beaumont P. Gold dust retinopathy after the ingestion of canthaxanthin to produce skin-bronzing. Med. J. 1985;143:622–623. doi: 10.5694/j.1326-5377.1985.tb119974.x. [DOI] [PubMed] [Google Scholar]
  • 4.Daicker B., Schiedt K., Adnet J.J., Bermond P. Canthaxanthin retinopathy. An investigation by light and electron microscopy and physicochemical analysis. Graefes Arch. Clin. Exp. Ophtalmol. 1987;222:189–197. doi: 10.1007/BF02175448. [DOI] [PubMed] [Google Scholar]
  • 5.White G.L.J., Beesley R., Thiese S.M., Murdock R.T. Retinal crystals and oral tanning agents. Am. Fam. Physician. 1988;37:125–126. [PubMed] [Google Scholar]
  • 6.Arden G.B., Oluwole J.O., Polkinghorne P., Bird A.C., Barker F.M., Norris P.G., Haek J.L. Monitoring of patients taking canthaxanthin and β-carotene: an electroetinographic and ophtalmologic survey. Hum. Toxicol. 1989;8:439–450. doi: 10.1177/096032718900800603. [DOI] [PubMed] [Google Scholar]
  • 7.Bopp S., el-Hifnawi E.L., Laqua H. Canthaxanthin retinopathy and macular pucker. J. Fr. Ophtalmol. 1989;12:891–896. [PubMed] [Google Scholar]
  • 8.Weber U., Michaelis L., Kern W., Goerz G. Experimental carotenoid retinopathy. II. Functional and morphological alterations of the rabbit retina after canthaxanthin application with small unilamellar phospholipid liposomes. Graefes Arch. Clin. Exp. Ophtalmol. 1987;225:346–450. doi: 10.1007/BF02153403. [DOI] [PubMed] [Google Scholar]
  • 9.Hennekes R. Peripheral retinal dystrophy following administration of canthaxanthin? Fortschr. Ophtalmol. 1986;83:600–601. [PubMed] [Google Scholar]
  • 10.Bluhm R., Branch R., Johnston P., Stein R. Aplastic anaemia associated with canthaxanthin ingested for ‘tanning’ purposes. JAMA. 1990;264:1141–1142. doi: 10.1001/jama.264.9.1141. [DOI] [PubMed] [Google Scholar]
  • 11.Chew B.P., Park J.S., Wong M.W., Wong T.S. A comparison of the anticancer activities of dietary β-carotene, canthaxanthin and astaxanthin in mice in vivo. Anticancer Res. 1999;19:1849–1853. [PubMed] [Google Scholar]
  • 12.Mathews-Roth M.M. Antitumor activity of beta-carotene, canthaxanthin and phytoene. Oncology. 1982;39:33–37. doi: 10.1159/000225601. [DOI] [PubMed] [Google Scholar]
  • 13.Mayne S.T., Parker R.S. Antioxidant activity of dietary canthaxanthin. Nutr. Cancer. 1989;12:225–236. doi: 10.1080/01635588909514022. [DOI] [PubMed] [Google Scholar]
  • 14.Palozza P., Maggiano N., Calviello G., Lanza P., Piccioni E., Ranelletti F.O., Bartoli G.M. Canthaxanthin induces apoptosis in human cancer cell lines. Carcinogenesis. 1998;19:373–376. doi: 10.1093/carcin/19.2.373. [DOI] [PubMed] [Google Scholar]
  • 15.Lober C.W. Canthaxanthin - the ‘tanning’ pill. J. Am. Acad. Dermatol. 1985;13:660. doi: 10.1016/S0190-9622(85)80442-4. [DOI] [PubMed] [Google Scholar]
  • 16.Baker R., Gunther C. The role of carotenoids in consumer choice and the likely benefits from their inclusion into products for human consumption. Trends Food Sci. Technol. 2004;15:484–488. doi: 10.1016/j.tifs.2004.04.0094. [DOI] [Google Scholar]
  • 17.Goralczyk R., Barker F.M., Buser S., Liechti H., Bausch J. Dose dependency of canthaxanthin crystals in monkey retina and spatial distribution of its metabolites. Invest. Ophthalmol. Vis. Sci. 2000;41:1513–1522. [PubMed] [Google Scholar]
  • 18.Macdonald K., Holti G., Marks J. Is there a place for carotene/canthaxanthin in photochemoterapy for psoriasis? Dermatologica. 1984;169:41–46. doi: 10.1159/000249565. [DOI] [PubMed] [Google Scholar]
  • 19.Futterman S., Kupfer C. The fatty acid composition of the retinal vasculature of normal and diabetic human eyes. Invest. Ophthalmol. Vis. Sci. 1968;7:105–108. [PubMed] [Google Scholar]
  • 20.Landrum J.T., Bone R.A. Lutein, zeaxanthin, and the macular pigment. Arch. Biochem. Biophys. 2001;385:28–40. doi: 10.1006/abbi.2000.2171. [DOI] [PubMed] [Google Scholar]
  • 21.Handelman G.J., Drarz E.A., Reay C.C., van Kuijk F.J.G.M. Carotenoids in the human macula and whole retina. Invest. Ophthalmol. Vis. Sci. 1988;29:850–855. [PubMed] [Google Scholar]
  • 22.Bone R.A., Landrum J.T., Fernandez L., Tarsis S.L. Analysis of the macular pigment by HPLC: retinal distribution and age study. Invest. Ophthalmol. Vis. Sci. 1988;29:843–849. [PubMed] [Google Scholar]
  • 23.Bernstein P.S., Yoshida M.D., Katz M.B., McClane R.W., Gellermann W. Raman detection of macular carotenoid pigments in intact human retina. Invest. Ophthalmol. Vis. Sci. 1998;39:2003–3011. [PubMed] [Google Scholar]
  • 24.Bernstein P.S., Khachik F., Carvalho L.S., Muir G.J., Zhao D.-Y., Katz N.B. Identification and quantization of carotenoids and their methabolites in the tissues of the human eye. Exp. Eye Res. 2001;72:215–223. doi: 10.1006/exer.2000.0954. [DOI] [PubMed] [Google Scholar]
  • 25.Sujak A., Gabrielska J., Grudzinski W., Borc R., Mazurek P., Gruszecki W.I. Lutein and zeaxanthin as protectors of lipid membranes against oxidative damage: the structural aspects. Arch. Biochem. Biophys. 1999;371:301–307. doi: 10.1006/abbi.1999.1437. [DOI] [PubMed] [Google Scholar]
  • 26.Schalch W. Carotenoids in the retina. In: Emerit I., Chence B., editors. Free Radicals and Ageing. Basel: Birkhauser-Verlag; 1992. [Google Scholar]
  • 27.Landrum J.T. Serum and macular pigment response to 2.4 mg dosage of lutein (Abstract) Assoc. Res. Vis. Ophtalmol. 2000;41:S60. [Google Scholar]
  • 28.Landrum J.T., Bone R.A., Jos H., Kilburn M.D., Moore L.L., Sprague K.E. A 1 year study of the macular pigment: the effect of 140 days of a lutein supplement. Exp. Eye Res. 1997;65:57–62. doi: 10.1006/exer.1997.0309. [DOI] [PubMed] [Google Scholar]
  • 29.Kopcke W., Barker F.M., Schalch W. Canthaxanthin deposition in the retina - a biostatistical evaluation of 411 patients. J. Toxicol. Cutan Ocul. Toxicol. 1995;14:8089–8104. [Google Scholar]
  • 30.Espaillat A., Aiello L.P., Arrigg P.G., Villalobos R., Silver P.M., Cavicchi R.W. Canthaxanthine retinopathy. Arch. Ophthalmol. 1999;117:412–413. doi: 10.1001/archopht.117.3.412. [DOI] [PubMed] [Google Scholar]
  • 31.Chang T.S., Aylward W., Gass J.D. Asymmetric canthaxanthin retinopathy. Am. J. Ophthalmol. 1995;119:801–802. doi: 10.1016/s0002-9394(14)72791-6. [DOI] [PubMed] [Google Scholar]
  • 32.Oosterhuis J.A., Remky H., Nijman N.M., Craandijk A., de Wolff F.A. Canthaxanthin retinopathy without intake of canthaxanthin. Klin. Monatsbl. Augenheilkd. 1989;194:110–116. doi: 10.1055/s-2008-1046346. [DOI] [PubMed] [Google Scholar]
  • 33.Audouy, D., Bord, G. and Audouy, R. Maculopathy with golden paillettes. Bull. Soc. Ophthalmol. Fr. (1987) 191–193. [PubMed]
  • 34.Bone R.A., Landrum J.T. Distribution of macular pigment components, zeaxanthin and lutein, in human retina. Methods Enzymol. 1992;213:360–366. doi: 10.1016/0076-6879(92)13137-M. [DOI] [PubMed] [Google Scholar]
  • 35.Stevens Andrews J., Leonard-Martin T. Total lipid and membrane lipid analysis of normal animal and human lenses. Invest. Ophthalmol. Vis. Sci. 1981;21:39–45. [PubMed] [Google Scholar]
  • 36.Boudreault G., Cortin P., Corriveau L.A., Rousseau A.P., Tardif Y., Malenfant M. Canthaxanthin retinopathy: 1. Clinical study in 51 consumers. Can. J. Ophtalmol. 1983;18:325–328. [PubMed] [Google Scholar]
  • 37.Gruszecki W.I., Strzalka K. Carotenoids as modulators of lipid membrane physical properties. Biochim. Biophys. Acta. 2005;1740:108–115. doi: 10.1016/j.bbadis.2004.11.015. [DOI] [PubMed] [Google Scholar]
  • 38.Bendich A., Olson J.A. Biological actions of carotenoids. Fed. Am. Soc. Exp. Biol. J. 1989;3:1927–1932. [PubMed] [Google Scholar]
  • 39.Gruszecki W.I. Carotenoids in Membranes. In: Frank H.A., Young A.J., Britton G., Cogdell R.J., editors. The Photochemistry of Carotenoids. Dordrecht: Kluwer Academic Publ.; 1999. [Google Scholar]
  • 40.Sujak A., Gabrielska J., Milanowska J., Mazurek P., Strzalka K., Gruszecki W.I. Studies on canthaxanthin in lipid membranes. Biochim. Biophys. Acta. 2005;1712:17–28. doi: 10.1016/j.bbamem.2005.03.010. [DOI] [PubMed] [Google Scholar]
  • 41.Linden A., Bürgi B., Eugster C.H. Confirmation of the structures of lutein and zeaxanthin. Helvetica Chim. Acta. 2004;87:1254–1269. doi: 10.1002/hlca.200490115. [DOI] [Google Scholar]
  • 42.Bart J.C., MacGillavry C.H. The crystal and molecular structure of canthaxanthin. Acta Crystallogr. B. 1968;24:1587–1606. doi: 10.1107/S056774086800470X. [DOI] [PubMed] [Google Scholar]
  • 43.Sujak A., Okulski W., Gruszecki W.I. Organisation of xanthophyll pigments lutein and zeaxanthin in lipid membranes formed with dipalmitoylphosphatidylcholine. Biochim. Biophys. Acta. 2000;1509:255–263. doi: 10.1016/S0005-2736(00)00299-6. [DOI] [PubMed] [Google Scholar]
  • 44.Sujak A., Mazurek P., Gruszecki W.I. Xanthophyll pigments lutein and zeaxanthin in lipid multibilayers formed with dimyristoylphosphatidylcholine. J. Photochem. Photobiol. B. 2002;68:39–44. doi: 10.1016/S1011-1344(02)00330-5. [DOI] [PubMed] [Google Scholar]
  • 45.Birge R.R., Zgierski M.Z., Serrano-Andres L., Hudson B.S. Transition Dipole orientation of linear polyenes: semiempirical models and extrapolation to the infinite chain limit. J. Phys. Chem. 1999;103:2251–2255. [Google Scholar]
  • 46.Dulley P. Ocular adverse reactions to tamoxifen-a review. Optal. Physiol. Opt. 1999;19:S2–S9. doi: 10.1016/S0275-5408(98)00084-2. [DOI] [PubMed] [Google Scholar]
  • 47.Berson E.L. Acute toxic effects of chloroquine on the cat retina. Invest. Ophthalmol. Vis. Sci. 1970;9:618–628. [PubMed] [Google Scholar]
  • 48.Olson J.A. Absorption, transport, and metabolism of carotenoids in humans. Pure Appl. Chem. 1994;66:1011–1016. doi: 10.1351/pac199466051011. [DOI] [Google Scholar]
  • 49.Snodderly D.M., Brown P.K., Delori F.C., Auran J.D. The macular pigment. I. Absorbance spectra, localization, and discrimination from other yellow pigments in primate retinas. Invest. Ophthalmol. Vis. Sci. 1984;25:660–673. [PubMed] [Google Scholar]
  • 50.Billsten H.H., Bhosale P., Yemelyanov A., Bernstein P.S., Polivka T. Photophysical properties of xanthophylls in carotenoproteins from human retina. Photochem. Photobiol. 2003;78:138–145. doi: 10.1562/0031-8655(2003)078<0138:PPOXIC>2.0.CO;2. [DOI] [PubMed] [Google Scholar]
  • 51.Yemelyanow A.Y., Katz N.B., Bernstein P.S. Ligand-binding characterization of xantophyll carotenoids to solubilized membrane proteins derived from the human retina. Exp. Eye Res. 2001;71:381–392. doi: 10.1006/exer.2000.0965. [DOI] [PubMed] [Google Scholar]
  • 52.Bhosale P., Larson J.M., Frederick K., Southwick K., Thulin C.D., Bernstein P.S. Identification and characterization of a Pi isoform of glutathione S-transferase (GSTP1) as a zeaxanthin-binding protein in the macula of the human eye. J. Biol. Chem. 2004;279:49447–49454. doi: 10.1074/jbc.M405334200. [DOI] [PubMed] [Google Scholar]
  • 53.Bhosale P., Bernstein P.S. Vertebrate and invertebrate carotenoid-binding proteins. Arch. Biochem. Biophys. 2007;458:121–127. doi: 10.1016/j.abb.2006.10.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Stahl W., Sies H. Bioactivity and protective effects of natural carotenoids. Biochim. Biophys. Acta. 2005;1740:101–105. doi: 10.1016/j.bbadis.2004.12.006. [DOI] [PubMed] [Google Scholar]
  • 55.Furr H.C., Clark R.M. Intestinal absorption and tissue distribution of carotenoids. Nutr. Biochem. 1997;8:364–377. doi: 10.1016/S0955-2863(97)00060-0. [DOI] [Google Scholar]
  • 56.Wisniewska A., Widomska J., Subczynski W.K. Carotenoid-membrane interactions in liposomes: effect of dipolar, monopolar, and nonpolar carotenoids. Acta Biochim. Pol. 2006;53:475–484. [PubMed] [Google Scholar]
  • 57.Sujak A., Strzalka K., Gruszecki W.I. Thermotropic phase behaviour of lipid bilayers containing carotenoid pigment canthaxanthin: a differential scanning calorimetry study. Chem. Phys. Lipids. 2007;145:1–12. doi: 10.1016/j.chemphyslip.2006.09.003. [DOI] [PubMed] [Google Scholar]
  • 58.Jones M.N., Chapman D. Micelles, monolayers and biomembranes. New York: Wiley-Liss; 1995. [Google Scholar]
  • 59.Shafaa M.W.I., Diehl H.A., Socaciu C. The solubilization pattern of lutein, zeaxanthin, canthaxanthin and b-carotene differ characteristically in liposomes, liver microsomes and retinal epithelial cells. Biophys. Chem. 2007;129:111–119. doi: 10.1016/j.bpc.2007.05.007. [DOI] [PubMed] [Google Scholar]
  • 60.Sujak A., Gagos M., Dalla Serra M., Gruszecki W.I. Organization of two-component monomolecular layers formed with dipalmitoylphosphatidylcholine and the carotenoid pigment, canthaxanthin. J. Mol. Biol. 2007;24:431–444. doi: 10.1080/09687860701243899. [DOI] [PubMed] [Google Scholar]
  • 61.Subczynski W.K., Markowska E., Gruszecki W.I., Sielewiesiuk J. Effects of polar carotenoids on dimyristoylphosphatidylcholine membranes: a spin-label study. Biochim. Biophys. Acta. 1992;1105:97–108. doi: 10.1016/0005-2736(92)90167-K. [DOI] [PubMed] [Google Scholar]
  • 62.Jezowska I., Wolak A., Gruszecki W.I., Strzalka K. Effect of betacarotene on structural and dynamic properties of model phosphatidylcholine membranes. II. A 31P-NMR and 13C-NMR study. Biochim. Biophys. Acta. 1994;1194:143–148. doi: 10.1016/0005-2736(94)90213-5. [DOI] [PubMed] [Google Scholar]
  • 63.Strzalka K., Gruszecki W.I. Effect of beta-carotene on structural and dynamic properties of model phosphatidylcholine membranes. I. An EPR spin label study. Biochim. Biophys. Acta. 1994;1194:138–142. doi: 10.1016/0005-2736(94)90212-7. [DOI] [PubMed] [Google Scholar]
  • 64.Gabrielska J., Gruszecki W.I. Zeaxanthin (dihydroxy-beta-carotene) but not beta-carotene rigidifies lipid membranes: A 1H-NMR study of carotenoid-egg phosphatidylcholine liposomes. Biochim. Biophys. Acta. 1996;1285:167–174. doi: 10.1016/S0005-2736(96)00152-6. [DOI] [PubMed] [Google Scholar]
  • 65.Castelli F., Caruso S., Giuffrida N. Different effects of two structurally similar carotenoids, lutein and beta-carotene, on the thermotropic behaviour of phosphatidylcholine liposomes. Calorimetric evidence of their hindered transport through biomembranes. Thermochim. Acta. 1999;327:125–131. doi: 10.1016/S0040-6031(98)00589-9. [DOI] [Google Scholar]
  • 66.Suwalsky M., Hidalgo P., Strzałka K., Kostecka-Gugała A. Comparative X-ray studies on the interaction of carotenoids with a model phosphatidylcholine membrane. Z. Naturforsch. 2002;57C:129–134. doi: 10.1515/znc-2002-1-222. [DOI] [PubMed] [Google Scholar]
  • 67.Jemiola-Rzeminska M., Pasenkiewicz-Gierula M., Strzalka K. The behaviour of beta-carotene in the phosphatidylcholine bilayer as revealed by a molecular simulation study. Chem. Phys. Lipids. 2005;135:27–37. doi: 10.1016/j.chemphyslip.2005.01.006. [DOI] [PubMed] [Google Scholar]
  • 68.Kostecka-Gugala A., Latowski D., Strzalka K. Thermotropic phase behaviour of alpha-dipalmitoylphosphatidylcholine multibilayers is influenced to various extents by carotenoids containing different structural features-evidence from differential scanning calorimetry. Biochim. Biophys. Acta. 2003;1609:193–202. doi: 10.1016/S0005-2736(02)00688-0. [DOI] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES