Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2010 Aug 14;15(4):582–599. doi: 10.2478/s11658-010-0029-x

The molecular cloning of glial fibrillary acidic protein in Gekko japonicus and its expression changes after spinal cord transection

Dehong Gao 1, Yongjun Wang 2, Yan Liu 2, Fei Ding 2, Xiaosong Gu 2,, Zhengli Li 1,
PMCID: PMC6275668  PMID: 20711818

Abstract

The glial fibrillary acidic protein (GFAP) is an astrocyte-specific member of the class III intermediate filament proteins. It is generally used as a specific marker of astrocytes in the central nervous system (CNS). We isolated a GFAP cDNA from the brain and spinal cord cDNA library of Gekko japonicus, and prepared polyclonal antibodies against gecko GFAP to provide useful tools for further immunochemistry studies. Both the real-time quantitative PCR and western blot results revealed that the expression of GFAP in the spinal cord after transection increased, reaching its maximum level after 3 days, and then gradually decreased over the rest of the 2 weeks of the experiment. Immunohistochemical analyses demonstrated that the increase in GFAP-positive labeling was restricted to the white matter rather than the gray matter. In particular, a slight increase in the number of GFAP positive star-shaped astrocytes was detected in the ventral and lateral regions of the white matter. Our results indicate that reactive astrogliosis in the gecko spinal cord took place primarily in the white matter during a short time interval, suggesting that the specific astrogliosis evaluated by GFAP expression might be advantageous in spinal cord regeneration.

Key words: Glial fibrillary acidic protein, Gecko, Regeneration, Spinal cord, Real-time PCR

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

Abbreviations used

GFAP

glial fibrillaryacidic protein

IPTG

isopropyl-β-D-thiogalactopyranoside

RACE

rapid amplification of cDNA ends

SDS-PAGE

sodium dodecyl sulfate polyacrylamide gel electrophoresis

Contributor Information

Xiaosong Gu, Email: neurongu@public.nt.js.cn.

Zhengli Li, Email: lizhengli123@hotmail.com.

References

  • 1.Eng L.F., Vanderheagen J.J., Bignami A., Gerstl B. An acidic protein isolated from fibrous astrocytes. Brain Res. 1971;28:351–354. doi: 10.1016/0006-8993(71)90668-8. [DOI] [PubMed] [Google Scholar]
  • 2.Bignami A., Eng L.F., Dahl D., Uyeda C.T. Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence. Brain Res. 1972;43:429–435. doi: 10.1016/0006-8993(72)90398-8. [DOI] [PubMed] [Google Scholar]
  • 3.Reeves S.A., Helman L.J., Allison A., Israel M.A. Molecular cloning and primary structure of human glial fibrillary acidic protein. Proc. Natl. Acad. Sci. 1989;86:5178–5182. doi: 10.1073/pnas.86.13.5178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Bongcam-Rudloff E., Nister M., Betsholtz C., Wang J.L., Stenman G., Huebner K., Croce C.M., Westermark B. Human glial fibrillary acidic protein: complementary DNA cloning, chromosome localization, and messenger RNA expression in human glioma cell lines of various phenotypes. Cancer Res. 1991;51:1553–1560. [PubMed] [Google Scholar]
  • 5.Isaacs A., Baker M., Wavrant-De, Vrieze F., Hutton M. Determination of the gene structure of human GFAP and absence of coding region mutations associated with frontotemporal dementia with parkinsonism linked to chromosome 17. Genomics. 1998;51:152–154. doi: 10.1006/geno.1998.5360. [DOI] [PubMed] [Google Scholar]
  • 6.Eng L.F., Ghirnikar R.S., Lee Y.L. Glial fibrillary acidic protein: GFAP-31 years (1969–2000) Neurochem Res. 2000;25:1439–1451. doi: 10.1023/A:1007677003387. [DOI] [PubMed] [Google Scholar]
  • 7.Nielsen A.L., Holm I.E., Johansen M., Bonven B., Jorgensen P., Jorgensen A.L. A new splice variant of glial fibrillary acidic protein, GFAP epsilon, interacts with the presenilin proteins. J. Biol. Chem. 2002;277:29983–29991. doi: 10.1074/jbc.M112121200. [DOI] [PubMed] [Google Scholar]
  • 8.Geisler N., Weber K. The amino acid sequence of chicken muscle desmin provides a common structural model for intermediate filament proteins. EMBO J. 1982;1:1649–1656. doi: 10.1002/j.1460-2075.1982.tb01368.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Steinert P.M., Roop D.R. Molecular and cellular biology of intermediate filaments. Annu. Rev. Biochem. 1988;57:593–625. doi: 10.1146/annurev.bi.57.070188.003113. [DOI] [PubMed] [Google Scholar]
  • 10.Parry D.A.D., Steinert P.M. Intermediate filament structure. Curr. Opin. Cell Biol. 1992;4:94–98. doi: 10.1016/0955-0674(92)90064-J. [DOI] [PubMed] [Google Scholar]
  • 11.Liedtke W., Edelmann W., Bieri P.L., Chiu F.C., Cowan N.J., Kucherlapati R., Raine C.S. GFAP is necessary for the integrity of CNS white matter architecture and long-term maintenance of myelination. Neuron. 1996;17:607–615. doi: 10.1016/S0896-6273(00)80194-4. [DOI] [PubMed] [Google Scholar]
  • 12.Kimelberg H.K., Norenberg M.D. Astrocytes. Sci. Am. 1989;260:66–76. doi: 10.1038/scientificamerican0489-66. [DOI] [PubMed] [Google Scholar]
  • 13.Bonni A., Sun Y., Nadal-Vicens M., Bhatt A., Frank D.A., Rozovsky I., Stahl N., Yancopoulos G.D., Greenberg M.E. Regulation of gliogenesis in the central nervous system by the JAK-STAT signaling pathway. Science. 1997;278:477–483. doi: 10.1126/science.278.5337.477. [DOI] [PubMed] [Google Scholar]
  • 14.Eng L.F., Ghirnikar R.S. GFAP and astrogliosis. Brain Pathol. 1994;4:229–237. doi: 10.1111/j.1750-3639.1994.tb00838.x. [DOI] [PubMed] [Google Scholar]
  • 15.Ransom B., Behar T., Nedergaard M. New roles for astrocytes (stars at last) Trends Neurosci. 2003;26:520–522. doi: 10.1016/j.tins.2003.08.006. [DOI] [PubMed] [Google Scholar]
  • 16.May P.C., Boggs L.N., Fuson K.S., Bender M., Li W., Miller F.D., Hyslop P., Calligaro D., Seubert P., Johnson-Wood K., Chen K., Games D., Schenk D. GFAP as a marker of plaque pathology in PDAPP transgenic mouse. Soc. Neurosci. Abstr. 1997;23:1638. [Google Scholar]
  • 17.Canady K.S., Rubel E.W. Rapid and reversible astrocytic reaction to afferent activity blockade in chick cochlear nucleus. J. Neurosci. 1992;12:1001–1009. doi: 10.1523/JNEUROSCI.12-03-01001.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Bignami A., Dahl D. The astrocytic response to stabbing. Immunofluorescence studies with antibodies to astrocytic-specific protein (GFAP) in mammalian and submammalian vertebrates. Neuropathol. Appl. Neurobiol. 1976;2:99–110. doi: 10.1111/j.1365-2990.1976.tb00488.x. [DOI] [Google Scholar]
  • 19.Silver J., Miller J.H. Regeneration beyond the glial scar. Nat. Rev. Neurosci. 2004;5:146–156. doi: 10.1038/nrn1326. [DOI] [PubMed] [Google Scholar]
  • 20.Wang X., Messing A., David S. Axonal and nonneuronal cell responses to spinal cord injury in mice lacking glial fibrillary acidic protein. Exp. Neurol. 1997;148:568–576. doi: 10.1006/exnr.1997.6702. [DOI] [PubMed] [Google Scholar]
  • 21.Menet V., Prieto M., Privat A., Gimenezy, Ribotta M. Axonal plasticity and functional recovery after spinal cord injury in mice deficient in both glial fibrillary acidic protein and vimentin genes. Proc. Natl. Acad. Sci. 2003;100:8999–9004. doi: 10.1073/pnas.1533187100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Faulkner J.R., Herrmann J.E., Woo M.J., Tansey K.E., Doan N.B., Sofroniew M.V. Reactive astrocytes protect tissue and preserve function after spinal cord injury. J. Neurosci. 2004;24:2143–2155. doi: 10.1523/JNEUROSCI.3547-03.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Okada S., Nakamura M., Katoh H., Miyao T., Shimazaki T., Ishii K., Yamane J., Yoshimura A., Iwamoto Y., Toyama Y., Okano H. Conditional ablation of Stat3 or Socs3 discloses a dual role for reactive astrocytes after spinal cord injury. Nat. Med. 2006;12:829–834. doi: 10.1038/nm1425. [DOI] [PubMed] [Google Scholar]
  • 24.Cristino L., Pica A., Della Corte F., Bentivoglio M. Plastic changes and nitric oxide synthase induction in neurons which innervated the regenerated tail of the lizard Gekko gecko II. The response of dorsal root ganglion cells to tail amputation and regeneration. Brain Res. 2000;871:83–93. doi: 10.1016/S0006-8993(00)02445-8. [DOI] [PubMed] [Google Scholar]
  • 25.Pixley S.K., De Vellis J. Transition between immature radial glia and mature astrocytes studied with a monoclonal antibody to vimentin. Brain Res. 1984;317:201–209. doi: 10.1016/0165-3806(84)90097-x. [DOI] [PubMed] [Google Scholar]
  • 26.Voigt T. Development of glial cells in the cerebral walls of ferrets: direct tracing of their transformation from radial glia into astrocytes. J. Comp. Neurol. 1989;289:74–88. doi: 10.1002/cne.902890106. [DOI] [PubMed] [Google Scholar]
  • 27.Elmquist J.K., Swanson J.J., Sakaguchi D.S., Ross L.R., Jacobson C.D. Developmental distribution of GFAP and vimentin in the Brazilian opossum brain. J. Comp. Neurol. 1994;344:283–296. doi: 10.1002/cne.903440209. [DOI] [PubMed] [Google Scholar]
  • 28.Lazzari M., Franceschini V. Intermediate filament immunohistochemistry of astroglial cells in the leopard gecko, Eublepharis macularius. Anat. Embryol. 2005;210:275–286. doi: 10.1007/s00429-005-0049-x. [DOI] [PubMed] [Google Scholar]
  • 29.Kalman M., Pritz M.B. Glial fibrillary acidic protein-immunopositive structures in the brain of acrocodilian, Caiman crocodilus, and its bearing on the evolution of astroglia. J. Comp. Neurol. 2001;431:460–480. doi: 10.1002/1096-9861(20010319)431:4<460::AID-CNE1083>3.0.CO;2-H. [DOI] [PubMed] [Google Scholar]
  • 30.Liu Y., Ding F., Liu M., Jiang M., Yang H., Feng X., Gu X. EST-based identification of genes expressed in brain and spinal cord of Gekko japonicus, a species demonstrating intrinsic capacity of spinal cord regeneration. J. Mol. Neurosci. 2006;29:21–28. doi: 10.1385/JMN:29:1:21. [DOI] [PubMed] [Google Scholar]
  • 31.Rehm B.H. Bioinformatic tools for DNA/protein sequence analysis, functional assignment of genes and protein classification. Appl. Micro-Biol. Biotechnol. 2001;57:579–592. doi: 10.1007/s00253-001-0844-0. [DOI] [PubMed] [Google Scholar]
  • 32.Altschul S.F., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Felsenstein J. PHYLIP (phylogeny inference package). version 3.6. Seattle: Department of Genome Sciences, University of Washington; 2004. [Google Scholar]
  • 34.Engvall E., Perlman P. Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry. 1971;8:871–874. doi: 10.1016/0019-2791(71)90454-X. [DOI] [PubMed] [Google Scholar]
  • 35.Rataboul P., Faucon, Biguet N., Vernier P., De Vitry F., Boularand S., Privat A., Mallet J. Identification of a human glial fibrillary acidic protein cDNA: a tool for the molecular analysis of reactive gliosis in the mammalian central nervous system. J. Neurosci. Res. 1988;20:165–175. doi: 10.1002/jnr.490200204. [DOI] [PubMed] [Google Scholar]
  • 36.Hozumi I., Chiu F.C., Norton W.T. Biochemical and immunocytochemical changes in glial fibrillary protein after stab wounds. Brain Res. 1990;524:64–71. doi: 10.1016/0006-8993(90)90492-T. [DOI] [PubMed] [Google Scholar]
  • 37.Goncalves C.A., Leite M.C., Nardin P. Biological and methodological features of the measurement of S100B, a putative marker of brain injury. Clin. Biochem. 2008;41:755–763. doi: 10.1016/j.clinbiochem.2008.04.003. [DOI] [PubMed] [Google Scholar]
  • 38.Norenberg M.D. Distribution of glutamine synthetase in the rat central nervous system. J. Histochem. Cytochem. 1979;27:756–762. doi: 10.1177/27.3.39099. [DOI] [PubMed] [Google Scholar]
  • 39.Inagaki K., Gonda T., Nishizawa K., Kitamura S., Sato C., Ando S., Tanabe K., Kikuchi K., Tsuiki S., Nishi Y. Phosphorylation sites linked to glial filament disassembly in vitro locate in a non-alpha-helical head domain. J. Biol. Chem. 1990;265:4722–4729. [PubMed] [Google Scholar]
  • 40.Takemura M., Gomi H., Colucci-Guyon E., Itohara S. Protectiverole of phosphorylation in turnover of glial fibrillary acidic protein in mice. J. Neurosci. 2002;22:6972–6979. doi: 10.1523/JNEUROSCI.22-16-06972.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Chen W.J., Liem R.K. The endless story of the glial fibrillary acidic protein. J. Cell Sci. 1994;107:2299–2311. doi: 10.1242/jcs.107.8.2299. [DOI] [PubMed] [Google Scholar]
  • 42.Bock E. Nervous system specific proteins. J. Neurochem. 1978;30:7–14. doi: 10.1111/j.1471-4159.1978.tb07028.x. [DOI] [PubMed] [Google Scholar]
  • 43.Nesic O., Lee J., Johnson K.M., Ye Z., Xu G.Y., Unabia G.C., Wood T.G., McAdoo D.J., Westlund K.N., Hulsebosch C.E., Regino, Perez-Polo J. Transcriptional profiling of spinal cord injury-induced central neuropathic pain. J. Neurochem. 2005;95:998–1014. doi: 10.1111/j.1471-4159.2005.03462.x. [DOI] [PubMed] [Google Scholar]
  • 44.Tian D.S., Dong Q., Pan D.J., He Y., Yu Z.Y., Xie M.J., Wang W. Attenuation of astrogliosis by suppressing of microglial proliferation with the cell cycle inhibitor olomoucine in rat spinal cord injury model. Brain Res. 2007;1154:206–214. doi: 10.1016/j.brainres.2007.04.005. [DOI] [PubMed] [Google Scholar]
  • 45.Ritz M.F., Hausmann O.N. Effect of 17beta-estradiol on functional outcome, release of cytokines, astrocyte reactivity and inflammatory spreading after spinal cord injury in male rats. Brain Res. 2008;1203:177–188. doi: 10.1016/j.brainres.2008.01.091. [DOI] [PubMed] [Google Scholar]
  • 46.Huang X., Kim J.M., Kong T.H., Park S.R., Ha Y., Kim M.H., Park H., Yoon S.H., Park H.C., Park J.O., Min B.H., Choi B.H. GM-CSF inhibits glial scar formation and shows long-term protective effect after spinal cord injury. J. Neurol. Sci. 2009;277:87–97. doi: 10.1016/j.jns.2008.10.022. [DOI] [PubMed] [Google Scholar]
  • 47.Pekny M., Wilhelmsson U., Bogestål Y.R., Pekna M. The role of astrocytes and complement system in neural plasticity. Int. Rev. Neurobiol. 2007;82:95–111. doi: 10.1016/S0074-7742(07)82005-8. [DOI] [PubMed] [Google Scholar]
  • 48.Morin-Richaud C., Feldblum S., Privat A. Astrocytes and oligodendrocytes reactions after a total section of the rat spinal cord. Brain Res. 1998;783:85–101. doi: 10.1016/S0006-8993(97)01282-1. [DOI] [PubMed] [Google Scholar]
  • 49.Collins G.H., West N.R. Glial activity during axonal regrowth following cryogenic injury of rat spinal cord. Brain Res. Bull. 1989;22:71–79. doi: 10.1016/0361-9230(89)90130-5. [DOI] [PubMed] [Google Scholar]
  • 50.Soriede A.J. Variations in the perineural glial changes after different types of nerve lesion: light and electron microscopic investigations on the facial nucleus of the rat. Neuropathol. Appl. Neurobiol. 1981;7:195–204. doi: 10.1111/j.1365-2990.1981.tb00089.x. [DOI] [PubMed] [Google Scholar]
  • 51.Alonso G., Privat A. Reactive astrocytes involved in the formation of lesional scars differ in the mediobasal hypothalamus and in other forebrain regions. J. Neurosci. Res. 1993;34:510–522. doi: 10.1002/jnr.490340504. [DOI] [PubMed] [Google Scholar]
  • 52.Sofroniew M.V., Vinters H.V. Astrocytes: biology and pathology. Acta Neuropathol. 2010;119:7–35. doi: 10.1007/s00401-009-0619-8. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES