Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2010 Mar 29;15(3):406–423. doi: 10.2478/s11658-010-0012-6

The effect of the lipid-binding site of the ankyrin-binding domain of erythroid β-spectrin on the properties of natural membranes and skeletal structures

Anna Chorzalska 1, Agnieszka Łach 1, Tomasz Borowik 2, Marcin Wolny 1, Anita Hryniewicz-Jankowska 1, Adam Kolondra 1, Marek Langner 2,3, Aleksander F Sikorski 1,3,
PMCID: PMC6275669  PMID: 20352359

Abstract

It was previously shown that the beta-spectrin ankyrin-binding domain binds lipid domains rich in PE in an ankyrin-dependent manner, and that its N-terminal sequence is crucial in interactions with phospholipids. In this study, the effect of the full-length ankyrin-binding domain of β-spectrin on natural erythrocyte and HeLa cell membranes was tested. It was found that, when encapsulated in resealed erythrocyte ghosts, the protein representing the full-length ankyrin-binding domain strongly affected the shape and barrier properties of the erythrocyte membrane, and induced partial spectrin release from the membrane, while truncated mutants had no effect. As found previously (Bok et al. Cell Biol. Int. 31 (2007) 1482–94), overexpression of the full-length GFP-tagged ankyrin-binding domain aggregated and induced aggregation of endogenous spectrin, but this was not the case with overexpression of proteins truncated at their N-terminus. Here, we show that the aggregation of spectrin was accompanied by the aggregation of integral membrane proteins that are known to be connected to spectrin via ankyrin, i.e. Na+K+ATP-ase, IP3 receptor protein and L1 CAM. By contrast, the morphology of the actin cytoskeleton remained unchanged and aggregation of cadherin E or N did not occur upon the overexpression of either full-length or truncated ankyrin-binding domain proteins. The obtained results indicate a substantial role of the lipid-binding part of the β-spectrin ankyrin-binding domain in the determination of the membrane and spectrin-based skeleton functional properties.

Key words: Spectrin-lipid interactions, Ankyrin-binding domain, Resealed ghosts, Membrane skeleton properties, Transmembrane protein aggregation

Full Text

The Full Text of this article is available as a PDF (11.8 MB).

Abbreviations used

DiD

1,1’dioctadecyl 3,3,3’3’tetramethylindocarbocyanine

PC

phosphatidylcholine

PE

phosphatidylethanolamine

SDS PAGE

SDS polyacrylamide gel electrophoresis

References

  • 1.Marchesi V.T., Steers E., Jr Selective solubilization of a protein component of the red cell membrane. Science. 1968;159:203–204. doi: 10.1126/science.159.3811.203. [DOI] [PubMed] [Google Scholar]
  • 2.Goodman S.R., Zagon I.S., Kulikowski R.R. Identification of a spectrin-like protein in nonerythroid cells. Proc. Natl Acad. Sci. USA. 1981;78:7570–7574. doi: 10.1073/pnas.78.12.7570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.De Matteis M.A., Morrow J.S. Spectrin tethers and mesh in the biosynthetic pathway. J. Cell Sci. 2000;113:2331–2343. doi: 10.1242/jcs.113.13.2331. [DOI] [PubMed] [Google Scholar]
  • 4.Bialkowska K., Saido T.C., Fox J.E.B. SH3 domain of spectrin participates in the activation of Rac in specialized calpain-induced integrin signaling complexes. J. Cell Sci. 2005;118:381–395. doi: 10.1242/jcs.01625. [DOI] [PubMed] [Google Scholar]
  • 5.Nedrelow J.H., Cianci C.D., Morrow J.S. c-Src binds αII Spectrin’s Src Homology 3 (SH3) domain and blocks calpain susceptibility by phosphorylating Tyr1176*. J. Biol. Chem. 2003;278:7735–7741. doi: 10.1074/jbc.M210988200. [DOI] [PubMed] [Google Scholar]
  • 6.Bennett V., Baines A.J. Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues. Physiol. Rev. 2001;81:1353–1392. doi: 10.1152/physrev.2001.81.3.1353. [DOI] [PubMed] [Google Scholar]
  • 7.Li J., Lykotrafitis G., Dao M., Suresh S. Cytoskeletal dynamics of human erythrocyte. Proc. Natl Acad. Sci. USA. 2007;104:4937–42. doi: 10.1073/pnas.0700257104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Mohandas N., Evans E. Mechanical properties of the red cell membrane in relation to molecular structure and genetic defects. Annu. Rev. Biophys. Biomol. Struct. 1994;23:787–818. doi: 10.1146/annurev.bb.23.060194.004035. [DOI] [PubMed] [Google Scholar]
  • 9.Gov N., Safran S.A. Pinning of fluid membranes by periodic harmonic potentials. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2004;69:011101. doi: 10.1103/PhysRevE.69.011101. [DOI] [PubMed] [Google Scholar]
  • 10.Bennett V., Branton D. Selective association of spectrin with the cytoplasmic surface of Human erythrocyte plasma membranes. Quantitative determination with purified (32P)spectrin. J. Biol. Chem. 1977;252:2753–2763. [PubMed] [Google Scholar]
  • 11.Bennett V., Stenbuck P.J. The membrane attachment protein for spectrin is associated with band 3 in human erythrocyte membranes. Nature. 1979;280:468–473. doi: 10.1038/280468a0. [DOI] [PubMed] [Google Scholar]
  • 12.Yu J., Goodman S.R. Syndeins: the spectrin-binding protein(s) of the human erythrocyte membrane. Proc. Natl Acad. Sci. USA. 1979;76:2340–2344. doi: 10.1073/pnas.76.5.2340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Hemming N.J., Anstee D.J., Staricoff M.A., Tanner M.J.A., Mohandas N. Identification of the membrane attachment sites for protein 4.1 in the human erythrocyte. J. Biol. Chem. 1995;270:5360–5366. doi: 10.1074/jbc.270.10.5360. [DOI] [PubMed] [Google Scholar]
  • 14.Mouro-Chanteloup I., Delaunay J., Gane P., Nicolas V., Johansen M., Brown E.J., Peters L.L., Le Van Kim C., Cartron J.P., Colin Y. Evidence that the red cell skeleton protein 4.2 interacts with the Rh membrane complex member CD47. Blood. 2003;101:338–344. doi: 10.1182/blood-2002-04-1285. [DOI] [PubMed] [Google Scholar]
  • 15.Nicolas V., Le Van Kim C., Gane P., Birkenmeier C., Cartron J.P., Colin Y., Mouro-Chanteloup I. Rh-RhAG/ankyrin-R, a new interaction site between the membrane bilayer and the red cell skeleton, is impaired by Rh(null)-associated mutation. J. Biol. Chem. 2003;278:25526–25533. doi: 10.1074/jbc.M302816200. [DOI] [PubMed] [Google Scholar]
  • 16.Salomao M., Zhang X., Yang Y., Lee S., Hartwig J.H., Chasis J.A., Mohandas N., An X. Proc. Natl Acad. Sci USA. 2008;105:8029–8031. doi: 10.1073/pnas.0803225105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Anong W.A., Franco T., Chu H., Weis T.L., Devlin E.E., Bodine D.M., An X., Mohandas N., Low P.S. Adducin forms a bridge between the erythrocyte membrane and its cytoskeleton and regulates membrane cohesion. Blood. 2009;114:1904–1912. doi: 10.1182/blood-2009-02-203216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Delaunay J. The molecular basis of hereditary red cell membrane disorders. Blood Rev. 2007;21:1–20. doi: 10.1016/j.blre.2006.03.005. [DOI] [PubMed] [Google Scholar]
  • 19.An X., Guo X., Sum H., Morrow J., Gratzer W., Mohandas N. Phosphatidylserine binding sites in erythroid spectrin: Location and implications for membrane stability. Biochemistry. 2004;43:310–315. doi: 10.1021/bi035653h. [DOI] [PubMed] [Google Scholar]
  • 20.Grzybek M., Chorzalska A., Bok E., Hryniewicz-Jankowska A., Czogalla A., Diakowski W., Sikorski A.F. Spectrin-phospholipid interactions. Existence of multiple kinds of binding sites. Chem. Phys. Lipids. 2006;141:133–141. doi: 10.1016/j.chemphyslip.2006.02.008. [DOI] [PubMed] [Google Scholar]
  • 21.Bia.kowska K., Zembro A., Sikorski A.F. Ankyrin inhibits binding of erythrocyte spectrin to phospholipid vesicles. Biochim. Biophys. Acta. 1994;1191:21–26. doi: 10.1016/0005-2736(94)90228-3. [DOI] [PubMed] [Google Scholar]
  • 22.Ray S., Chakrabarti A. Membrane interaction of erythroid spectrin: surface-density dependent high-affinity binding to phosphatidylethanolamine. Mol. Membr. Biol. 2004;21:93–100. doi: 10.1080/09687680310001625800. [DOI] [PubMed] [Google Scholar]
  • 23.Hryniewicz-Jankowska A., Bok E., Dubielecka P., Chorzalska A., Diakowski W., Jezierski A., Lisowski M., Sikorski A.F. Mapping of an ankyrin-sensitive, phosphatidylethanol-amine/phosphatidylcholine monoand bi-layer binding site in erythroid β-spectrin. Biochem. J. 2004;382:677–685. doi: 10.1042/BJ20040358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Bok E., Plażuk E., Hryniewicz-Jankowska A., Chorzalska A., Szmaj A., Dubielecka P.M., Stebelska K., Diakowski W., Lisowski M., Langner M., Sikorski A.F. Lipid-binding role of betaII-spectrin ankyrin-binding domain. Cell. Biol. Int. 2007;31:1482–1494. doi: 10.1016/j.cellbi.2007.06.014. [DOI] [PubMed] [Google Scholar]
  • 25.Kennedy S.P., Warren S.L., Forget B.G., Morrow J.S. Ankyrin binds to the 15th repetitive unit of erythroid and nonerythroid beta-spectrin. J. Cell. Biol. 1991;115:267–277. doi: 10.1083/jcb.115.1.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Bodemann H., Passow H. Factors controlling the resealing of the membrane of human erythrocyte ghosts after hypotonic hemolysis. J. Membr. Biol. 1972;8:1–26. doi: 10.1007/BF01868092. [DOI] [PubMed] [Google Scholar]
  • 27.Steck T.L., Kant J.A. Preparation of impermeable ghosts and inside-out vesicles from Human erythrocyte membranes. Methods Enzymol. 1974;31:172–180. doi: 10.1016/0076-6879(74)31019-1. [DOI] [PubMed] [Google Scholar]
  • 28.Pażdzior G., Langner M., Chmura A., Bogusławska D., Heger E., Chorzalska A., Sikorski A.F. The kinetics of haemolysis of spherocytic erythrocytes. Cell. Mol. Biol. Lett. 2003;8:639–648. [PubMed] [Google Scholar]
  • 29.Manno S., Takakuwa Y., Mohandas N. Identification of a functional role for lipid asymmetry in biological membranes: Phosphatidylserine-skeletal protein interactions modulate membrane stability. Proc. Natl. Acad. Sci. USA. 2002;99:1943–1948. doi: 10.1073/pnas.042688399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Hu R.J., Moorthy S., Bennett V. Expression of functional domains of betaG spectrin disrupts epithelial morphology in cultured cells. J. Cell Biol. 1995;128:1069–1080. doi: 10.1083/jcb.128.6.1069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Sikorski A.F., Białkowska K. Interactions of Spectrins with Membrane Intrinsic Domain. Cell. Mol. Biol. Lett. 1996;1:97–104. [Google Scholar]
  • 32.Ipsaro J.J., Huang L., Mondragon A. Structures of the spectrin-ankyrin interaction binding domains. Blood. 2009;113:5385–5393. doi: 10.1182/blood-2008-10-184358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Czogalla A., Jaszewski A.R., Diakowski W., Bok E., Jezierski A., Sikorski A.F. Structural insight into an ankyrin-sensitive lipid-binding site of erythroid beta-spectrin. Mol. Membr. Biol. 2007;24:215–224. doi: 10.1080/09687860601102427. [DOI] [PubMed] [Google Scholar]
  • 34.Czogalla A., Grzymajło K., Jezierski A., Sikorski A.F. Phospholipid-induced structural changes to an erythroid beta spectrin ankyrin-dependent lipid-binding site. Biochim. Biophys. Acta. 2008;1778:2612–2620. doi: 10.1016/j.bbamem.2008.07.020. [DOI] [PubMed] [Google Scholar]
  • 35.Stabach P.R., Simonovic I., Ranieri M.A., Abodi M.S., Steitz T.A., Simonovic M., Morrow J.S. The structure of the ankyrin-binding site of b-spectrin reveals how tandem spectrin-repeats generate unique ligand-binding properties. Blood. 2009;113:5377–5384. doi: 10.1182/blood-2008-10-184291. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES