Abstract
The response of a red blood cell (RBC) to deformation depends on its membrane, a composite of a lipid bilayer and a skeleton, which is a closed, twodimensional network of spectrin tetramers as its bonds. The deformation of the skeleton and its lateral redistribution are studied in terms of the RBC resting state for a fixed geometry of the RBC, partially aspirated into a micropipette. The geometry of the RBC skeleton in its initial state is taken to be either two concentric circles, a references biconcave shape or a sphere. It is assumed that in its initial state the skeleton is distributed laterally in a homogeneous manner with its bonds either unstressed, presenting its stress-free state, or prestressed. The lateral distribution was calculated using a variational calculation. It was assumed that the spectrin tetramer bonds exhibit a linear elasticity. The results showed a significant effect of the initial skeleton geometry on its lateral distribution in the deformed state. The proposed model is used to analyze the measurements of skeleton extension ratios by the method of applying two modes of RBC micropipette aspiration.
Key words: Red blood cell, Stress-free shape, Membrane skeleton, Skeleton deformation, Spectrin, Micropipette aspiration
Full Text
The Full Text of this article is available as a PDF (430.6 KB).
Abbreviation used
- RBC
red blood cell
References
- 1.Waugh R.E., Hochmuth R.M. Mechanics and deformability of hematocytes. In: Bronzino J.D., editor. The Biomedical Engineering Handbook. 2nd edition. Boca Raton: CRC; 1995. pp. 474–486. [Google Scholar]
- 2.Discher D.E., Mohandas N. Kinematics of red cell aspiration by fluorescence-imaged microdeformation. Biophys. J. 1996;71:1680–1694. doi: 10.1016/S0006-3495(96)79424-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Discher D.E., Boal D.H., Boey S.K. Simulations of the erythrocyte cytoskeleton at large deformation. II. micropipette aspiration. Biophys. J. 1998;75:1584–1597. doi: 10.1016/S0006-3495(98)74076-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Skalak R., Tozeren A., Zarda R.P., Chien S. Strain energy function of red blood-cell membranes. Biophys. J. 1973;13:245–264. doi: 10.1016/S0006-3495(73)85983-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Evans E.A. New material concept for red-cell membrane. Biophys. J. 1973;13:926–940. doi: 10.1016/S0006-3495(73)86035-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Evans E.A. New membrane concept applied to analysis of fluid sheardeformed and micropipet-deformed red blood-cells. Biophys. J. 1973;13:941–954. doi: 10.1016/S0006-3495(73)86036-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Brailsford J.D., Korpman R.A., Bull B.S. Red-cell shape from discocyte to hypotonic spherocyte — mathematical delineation based on a uniform shell hypothesis. J. Theor. Biol. 1976;60:131–145. doi: 10.1016/0022-5193(76)90159-4. [DOI] [PubMed] [Google Scholar]
- 8.Fischer T.M., Haest C.W.M., Stohrliesen M., Schmidschonbein H., Skalak R. The stress-free shape of the red-blood-cell membrane. Biophys. J. 1981;34:409–422. doi: 10.1016/S0006-3495(81)84859-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Peng Z., Asaro R.J., Zhu Q. Multiscale simulation of erythrocyte membrane. Phys. Rev. E. 2010;81:031904. doi: 10.1103/PhysRevE.81.031904. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Lee J.C., Wong D.T., Discher D.E. Direct measures of large, anisotropic strains in deformation of the erythrocyte cytoskeleton. Biophys. J. 1999;77:853–864. doi: 10.1016/S0006-3495(99)76937-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Evans E.A., Fung Y.C. Improved measurements of the erythrocyte geometry. Microvasc. Res. 1972;4:335–347. doi: 10.1016/0026-2862(72)90069-6. [DOI] [PubMed] [Google Scholar]
- 12.Byers T.J., Branton D. Visualization of the protein associations in the erythrocyte-membrane skeleton. Proc. Natl. Acad. Sci. USA. 1985;82:6153–6157. doi: 10.1073/pnas.82.18.6153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Mukhopadhyay R., Lim G., Wortis M. Echinocyte shapes: bending, stretching, and shear determine bump shape and spacing. Biophys. J. 2002;82:1756–1772. doi: 10.1016/S0006-3495(02)75527-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Kuzman D., Svetina S., Waugh R.E., Žekš B. Elastic properties of the red blood cell membrane that determine echinocyte deformability. Eur. Biophys J. 2004;33:1–15. doi: 10.1007/s00249-003-0337-4. [DOI] [PubMed] [Google Scholar]
- 15.Fischer T.M. Shape memory of human red blood cells. Biophys. J. 2004;86:3304–3313. doi: 10.1016/S0006-3495(04)74378-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Henon S., Guillaume L., Richert A., Gallet F. A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers. Biophys. J. 1999;86:1145–1154. doi: 10.1016/S0006-3495(99)77279-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Li J., Dao M., Lim C.T., Suresh S. Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte. Biophys. J. 2005;88:3707–3719. doi: 10.1529/biophysj.104.047332. [DOI] [PMC free article] [PubMed] [Google Scholar]