Abstract
Ionizing radiation is one of the types of oxidative stress that has a number of damaging effects on cutaneous tissues. One of the histological features of radiation-induced cutaneous fibrosis is the accumulation of extracellular matrix (ECM) components, including heparan sulfate proteoglycan (HSPG), which are required for the repair of tissue damage, and operate by interacting with a variety of growth factors. In this study, we established a model of human HaCaT keratinocytes overexpressing anti-oxidative enzyme genes to elucidate the mechanism of oxidative stress leading to the accumulation of HSPG and the role of its accumulation. Catalase overexpression induced an increase in anti-HS antibody (10E4) epitope expression in these cells. Western blotting showed that the smeared bands of HSPG were obviously shifted to a higher molecular weight in the catalase transfectants due to glycosylation. After heparitinase I treatment, the core proteins of HSPG were expressed in the catalase transfectants to almost the same extent as in the control cells. In addition, the transcript levels of all the enzymes required for the synthesis of the heparan sulfate chain were estimated in the catalase transfectant clones. The levels of five enzyme transcripts — xylosyltransferase-II (XT-II), EXTL2, D-glucuronyl C5-epimerase (GLCE), HS2-O-sulfotransferase (HS2ST), and HS6-O-sulfotransferase (HS6ST) — were significantly increased in the transfectants. Moreover, hydrogen peroxide was found to down-regulate the levels of these enzymes. By contrast, siRNA-mediated repression of catalase decreased 10E4 epitope expression, the transcript level of HS2ST1, and the growth rate of HaCaT cells. These findings suggested that peroxide-mediated transcriptional regulation of HS metabolism-related genes modified the HS chains in the HaCaT keratinocytes.
Key words: Heparan sulfate proteoglycan, HaCaT keratinocyte, Glycosyltransferase, Catalase, Sulfotransferase
Full Text
The Full Text of this article is available as a PDF (581.4 KB).
Abbreviations used
- CS
chondroitin sulfate
- FGF
fibroblast growth factor
- GAG
glycosaminoglycan
- Gal
galactose
- GalNAc
N-acetylgalactosamine
- GlcA
glucuronic acid
- GLCE
d-glucuronyl C5-epimerase
- GlcNAc
N-acetylglucosamine
- HSPG
heparan sulfate proteoglycan
- HS2ST
heparan sulfate 2-O-sulfotransferase
- HS6ST
heparan sulfate 6-O-sulfotransferase
- PDGF
platelet-derived growth factor
- ROS
reactive oxygen species
- SOD
superoxide dismutase
- XT
xylosyltransferase
- Xyl
xylose
References
- 1.Esko J.D., Selleck S.B. Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu. Rev. Biochem. 2002;71:435–471. doi: 10.1146/annurev.biochem.71.110601.135458. [DOI] [PubMed] [Google Scholar]
- 2.Flaumenhaft R., Moscatelli D., Rifkin D.B. Heparin and heparan sulfate increase the radius of diffusion and action of basic fibroblast growth factor. J. Cell Biol. 1990;111:1651–1659. doi: 10.1083/jcb.111.4.1651. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Yayon A., Klagsbrun M., Esko J.D., Leder P., Ornitz D.M. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell. 1991;64:841–848. doi: 10.1016/0092-8674(91)90512-W. [DOI] [PubMed] [Google Scholar]
- 4.Aviezer D., Levy E., Safran M., Svahn C., Buddecke E., Schmidt A., David G., Vlodavsky I., Yayon A. Differential structural requirements of heparin and heparan sulfate proteoglycans that promote binding of basic fibroblast growth factor to its receptor. J. Biol. Chem. 1994;269:114–121. [PubMed] [Google Scholar]
- 5.Götting C., Kuhn J., Zahn R., Brinkmann T., Kleesiek K. Molecular cloning and expression of human UDP-D-Xylose: proteoglycan core protein β-d-xylosyltransferase and its first isoform XT-II. J. Mol. Biol. 2000;304:517–528. doi: 10.1006/jmbi.2000.4261. [DOI] [PubMed] [Google Scholar]
- 6.Pönighaus C., Ambrosius M., Casanova J.C., Prante C., Kuhn J., Esko J.D., Kleesiek K., Götting C. Human xylosyltransferase II is involved in the biosynthesis of the uniform tetrasaccharide linkage region in chondroitin sulfate and heparan sulfate proteoglycans. J. Biol. Chem. 2007;282:5201–5206. doi: 10.1074/jbc.M611665200. [DOI] [PubMed] [Google Scholar]
- 7.Almeida R., Levery S.B., Mandel U., Kresse H., Schwientek T., Bennett E. P., Clausen H. Cloning and expression of a proteoglycan UDP-galactose: β-xylose β1,4-galactosyltransferase I. A seventh member of the human β4-galactosyltransferase gene family. J. Biol. Chem. 1999;274:26165–26171. doi: 10.1074/jbc.274.37.26165. [DOI] [PubMed] [Google Scholar]
- 8.Bai X., Zhou D., Brown J.R., Crawford B.E., Hennet T., Esko J.D. Biosynthesis of the linkage region of glycosaminoglycans: cloning and activity of galactosyltransferase II, the sixth member of the β1,3-galactosyltransferase family (β3GalT6) J. Biol. Chem. 2001;276:48189–48195. doi: 10.1074/jbc.M107339200. [DOI] [PubMed] [Google Scholar]
- 9.Kitagawa H., Tone Y., Tamura J., Neumann K.W., Ogawa T., Oka S., Kawasaki T., Sugahara K. Molecular cloning and expression of glucuronyltransferase I involved in the biosynthesis of the glycosaminoglycan-protein linkage region of proteoglycans. J. Biol. Chem. 1998;273:6615–6618. doi: 10.1074/jbc.273.12.6615. [DOI] [PubMed] [Google Scholar]
- 10.Zak B.M., Crawford B.E., Esko J.D. Hereditary multiple exostoses and heparan sulfate polymerization. Biochim. Biophys. Acta. 2002;1573:346–355. doi: 10.1016/s0304-4165(02)00402-6. [DOI] [PubMed] [Google Scholar]
- 11.Habuchi H., Habuchi O., Kimata K. Sulfation pattern in glycosaminoglycan: does it have a code? Glycoconj J. 2004;21:47–52. doi: 10.1023/B:GLYC.0000043747.87325.5e. [DOI] [PubMed] [Google Scholar]
- 12.Orellana A., Hirschberg C.B., Wei Z., Swiedler S.J., Ishihara M. Molecular cloning and expression of a glycosaminoglycan N-acetylglucosaminyl N-deacetylase/N-sulfotransferase from a heparinproducing cell line. J. Biol. Chem. 1994;269:2270–2276. [PubMed] [Google Scholar]
- 13.Eriksson I., Sandbäck D., Ek B., Lindahl U., Kjellén L. cDNA cloning and sequencing of mouse mastocytoma glucosaminyl N-deacetylase/N-sulfotransferase, an enzyme involved in the biosynthesis of heparin. J. Biol. Chem. 1994;269:10438–10443. [PubMed] [Google Scholar]
- 14.Aikawa J., Esko J.D. Molecular cloning and expression of a third member of the heparan sulfate/heparin GlcNAc N-deacetylase/N-sulfotransferase family. J. Biol. Chem. 1999;274:2690–2695. doi: 10.1074/jbc.274.5.2690. [DOI] [PubMed] [Google Scholar]
- 15.Aikawa J., Grobe K., Tsujimoto M., Esko J.D. Multiple isozymes of heparan sulfate/heparin GlcNAc N-deacetylase/GlcN N-sulfotransferase. Structure and activity of the fourth member, NDST4. J. Biol. Chem. 2001;276:5876–5882. doi: 10.1074/jbc.M009606200. [DOI] [PubMed] [Google Scholar]
- 16.Habuchi H., Tanaka M., Habuchi O., Yoshida K., Suzuki H., Ban K., Kimata K. The occurrence of three isoforms of heparan sulfate 6-O-sulfotransferase having different specificities for hexuronic acid adjacent to the targeted N-sulfoglucosamine. J. Biol. Chem. 2000;275:2859–2868. doi: 10.1074/jbc.275.4.2859. [DOI] [PubMed] [Google Scholar]
- 17.Shworak N.W., Liu J., Fritze L.M., Schwartz J.J., Zhang L., Logeart D., Rosenberg R.D. Molecular cloning and expression of mouse and human cDNAs encoding heparan sulfate d-glucosaminyl 3-O-sulfotransferase. J. Biol. Chem. 1997;272:28008–28019. doi: 10.1074/jbc.272.44.28008. [DOI] [PubMed] [Google Scholar]
- 18.Shworak N.W., Liu J., Petros L. M., Zhang L., Kobayashi M., Copeland N. G., Jenkins N.A., Rosenberg R.D. Multiple isoforms of heparan sulfate d-glucosaminyl 3-O-sulfotransferase. Isolation, characterization, and expression of human cDNAs and identification of distinct genomic loci. J. Biol. Chem. 1999;274:5170–5184. doi: 10.1074/jbc.274.8.5170. [DOI] [PubMed] [Google Scholar]
- 19.Xia G., Chen J., Tiwari V., Ju W., Li J.P., Malmstrom A., Shukla D., Liu J. Heparan sulfate 3-O-sulfotransferase isoform 5 generates both an antithrombin-binding site and an entry receptor for herpes simplex virus, type 1. J. Biol. Chem. 2002;277:37912–37919. doi: 10.1074/jbc.M204209200. [DOI] [PubMed] [Google Scholar]
- 20.Ward J.F. DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and reparability. Prog. Nucleic Acid Res. Mol. Biol. 1988;35:95–125. doi: 10.1016/S0079-6603(08)60611-X. [DOI] [PubMed] [Google Scholar]
- 21.Reth M. Hydrogen peroxide as second messenger in lymphocyte activation. Nat. Immunol. 2002;3:1129–1134. doi: 10.1038/ni1202-1129. [DOI] [PubMed] [Google Scholar]
- 22.Preston T.J., Muller W.J., Singh G. Scavenging of extracellular H2O2 by catalase inhibits the proliferation of HER-2/Neu-transformed rat-1 fibroblasts through the induction of a stress response. J. Biol. Chem. 2001;276:9558–9564. doi: 10.1074/jbc.M004617200. [DOI] [PubMed] [Google Scholar]
- 23.Nakayama F., Teraki Y., Kudo T., Togayachi A., Iwasaki H., Tamatani T., Nishihara S., Mizukawa Y., Shiohara T., Narimatsu H. Expression of cutaneous lymphocyte-associated antigen regulated by a set of glycosyltransferases in human T cells: involvement of α1,3-fucosyltransferase VII and β1,4-galactosyltransferase I. J. Invest. Dermatol. 2000;115:299–306. doi: 10.1046/j.1523-1747.2000.00032.x. [DOI] [PubMed] [Google Scholar]
- 24.Nakayama F., Nishihara S., Iwasaki H., Kudo T., Okubo R., Kaneko M., Nakamura M., Karube M., Sasaki K., Narimatsu H. CD15 expression in mature granulocytes is determined by α1,3-fucosyltransferase IX, but in promyelocytes and monocytes by α1,3-fucosyltransferase IV. J. Biol. Chem. 2001;276:16100–16106. doi: 10.1074/jbc.M007272200. [DOI] [PubMed] [Google Scholar]
- 25.Hachiya M., Akashi M. Catalase regulates cell growth in HL60 human promyelocytic cells: evidence for growth regulation by H2O2. Radiat. Res. 2005;163:271–282. doi: 10.1667/RR3306. [DOI] [PubMed] [Google Scholar]
- 26.Clare D.A., Duong M.N., Darr D., Archibald F., Fridovich I. Effects of molecular oxygen on detection of superoxide radical with nitroblue tetrazolium and on activity stains for catalase. Anal. Biochem. 1984;140:532–537. doi: 10.1016/0003-2697(84)90204-5. [DOI] [PubMed] [Google Scholar]
- 27.Uyama T., Kitagawa H., Tamura J., Sugahara K. Molecular cloning and expression of human chondroitin N-acetylgalactosaminyltransferase: the key enzyme for chain initiation and elongation of chondroitin/dermatan sulfate on the protein linkage region tetrasaccharide shared by heparin/heparan sulfate. J. Biol. Chem. 2002;277:8841–8846. doi: 10.1074/jbc.M111434200. [DOI] [PubMed] [Google Scholar]
- 28.Gotoh M., Sato T., Akashima T., Iwasaki H., Kameyama A., Mochizuki H., Yada T., Inaba N., Zhang Y., Kikuchi N., Kwon Y.D., Togayachi A., Kudo T., Nishihara S., Watanabe H., Kimata K., Narimatsu H. Enzymatic synthesis of chondroitin with a novel chondroitin sulfate N-acetylgalactosaminyltransferase that transfers N-acetylgalactosamine to glucuronic acid in initiation and elongation of chondroitin sulfate synthesis. J. Biol. Chem. 2002;277:38189–38196. doi: 10.1074/jbc.M203619200. [DOI] [PubMed] [Google Scholar]
- 29.Sato T., Gotoh M., Kiyohara K., Akashima T., Iwasaki H., Kameyama A., Mochizuki H., Yada T., Inaba N., Togayachi A., Kudo T., Asada M., Watanabe H., Imamura T., Kimata K., Narimatsu H. Differential roles of two N-acetylgalactosaminyltransferases, CSGalNAcT-1, and a novel enzyme, CSGalNAcT-2. Initiation and elongation in synthesis of chondroitin sulfate. J. Biol. Chem. 2003;278:3063–3071. doi: 10.1074/jbc.M208886200. [DOI] [PubMed] [Google Scholar]
- 30.Kitagawa H., Shimakawa H., Sugahara K. The tumor suppressor EXT-like gene EXTL2 encodes an α1,4-N-acetylhexosaminyltransferase that transfers N-acetylgalactosamine and N-acetylglucosamine to the common glycosaminoglycan-protein linkage region. The key enzyme for the chain initiation of heparan sulfate. J. Biol. Chem. 1999;274:13933–13937. doi: 10.1074/jbc.274.20.13933. [DOI] [PubMed] [Google Scholar]
- 31.Kim B.T., Kitagawa H., Tamura J., Saito T., Kusche-Gullberg M., Lindahl U., Sugahara K. Human tumor suppressor EXT gene family members EXTL1 and EXTL3 encode α1,4-N-acetylglucosaminyltransferases that likely are involved in heparan sulfate/heparin biosynthesis. Proc. Natl. Acad. Sci. USA. 2001;98:7176–7181. doi: 10.1073/pnas.131188498. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Turnbull J.E., Fernig D.G., Ke Y., Wilkinson M.C., Gallagher J.T. Identification of the basic fibroblast growth factor binding sequence in fibroblast heparan sulfate. J. Biol. Chem. 1992;267:10337–10341. [PubMed] [Google Scholar]
- 33.Kreuger J., Salmivirta M., Sturiale L., Gimenez-Gallego G., Lindahl U. Sequence analysis of heparan sulfate epitopes with graded affinities for fibroblast growth factors 1 and 2. J. Biol. Chem. 2001;276:30744–30752. doi: 10.1074/jbc.M102628200. [DOI] [PubMed] [Google Scholar]
- 34.Liu J., Shworak N.W., Sinaÿ P., Schwartz J.J., Zhang L., Fritze L.M., Rosenberg R.D. Expression of heparan sulfate d-glucosaminyl 3-O-sulfotransferase isoforms reveals novel substrate specificities. J. Biol. Chem. 1999;274:5185–5192. doi: 10.1074/jbc.274.8.5185. [DOI] [PubMed] [Google Scholar]
- 35.Baker M.S., Feigan J., Lowther D.A. Chondrocyte antioxidant defences: the roles of catalase and glutathione peroxidase in protection against H2O2 dependent inhibition of proteoglycan biosynthesis. J. Rheumatol. 1988;15:670–677. [PubMed] [Google Scholar]
- 36.Bates E.J., Johnson C.C., Lowther D.A. Inhibition of proteoglycan synthesis by hydrogen peroxide in cultured bovine articular cartilage. Biochim. Biophys. Acta. 1985;838:221–228. doi: 10.1016/0304-4165(85)90082-0. [DOI] [PubMed] [Google Scholar]
- 37.Schalkwijk J., van den Berg W.B., van de Putte L., Joosten L.A. Hydrogen peroxide suppresses the proteoglycan synthesis of intact articular cartilage. J. Rheumatol. 1985;12:205–210. [PubMed] [Google Scholar]