Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2013 Jul 26;18(3):433–446. doi: 10.2478/s11658-013-0098-8

Molecular cloning and characterization of a novel anti-TLR9 intrabody

Elisa Reimer 198, Stefan Somplatzki 198, Diana Zegenhagen 198, Svenja Hänel 198, Alina Fels 198, Thorsten Bollhorst 198, Ludger Grosse Hovest 298, Stefan Bauer 398, Carsten J Kirschning 498, Thomas Böldicke 198,
PMCID: PMC6275677  PMID: 23893288

Abstract

Toll-like receptor 9 (TLR9) is a component of the innate immune system, which recognizes the DNA of both pathogens and hosts. Thus, it can drive autoimmune diseases. Intracellular antibodies expressed inside the ER block transitory protein functions by inhibiting the translocation of the protein from the ER to its subcellular destination. Here, we describe the construction and characterization of an anti-TLR9 ER intrabody (αT9ib). The respective single-chain Fv comprises the variable domains of the heavy and light chain of a monoclonal antibody (mAb; 5G5) towards human and murine TLR9. Co-expression of αT9ib and mouse TLR9 in HEK293 cells resulted in co-localization of both molecules with the ER marker calnexin. Co-immunoprecipitation of mouse TLR9 with αT9ib indicated that αT9ib interacts with its cognate antigen. The expression of αT9ib inhibited NF-κB-driven reporter gene activation upon CpG DNA challenge but not the activation of TLR3 or TLR4. Consequently, TLR9-driven TNFα production was inhibited in RAW264.7 macrophages upon transfection with the αT9ib expression plasmid. The αT9ib-encoding open reading frame was integrated into an adenoviral cosmid vector to produce the recombinant adenovirus (AdV)-αT9ib. Transduction with AdVαT9ib specifically inhibited TLR9-driven cellular TNFα release. These data strongly indicate that αT9ib is a very promising experimental tool to block TLR9 signaling.

Key words: Recombinant antibodies, Recombinant adenovirus, Protein knockdown, Intracellular toll-like receptors, TLR9, ER intrabodies, Macrophage activation

Full Text

The Full Text of this article is available as a PDF (725.1 KB).

Abbreviations used

mAb

monoclonal antibody

Intrabody

intracellular antibody

Footnotes

These authors contributed equally to this work.

References

  • 1.Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124:783–801. doi: 10.1016/j.cell.2006.02.015. [DOI] [PubMed] [Google Scholar]
  • 2.Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 2010;11:373–384. doi: 10.1038/ni.1863. [DOI] [PubMed] [Google Scholar]
  • 3.Lee, B.L., Moon, J.E., Shu, J.H., Yuan L., Newman, Z.R., Schekman, R. and Barton G.M. UNC93B1 mediates differential trafficking of endosomal TLRs. eLife. 00291. [DOI] [PMC free article] [PubMed]
  • 4.Latz E, Schoenemeyer A, Visintin A, Fitzgerald KA, Monks BG, Knetter CF, Lien E, Nilsen NJ, Espevik T, Golenbock DT. TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat. Immunol. 2004;5:190–198. doi: 10.1038/ni1028. [DOI] [PubMed] [Google Scholar]
  • 5.Trivedi S, Greidinger EL. Endosomal Toll-like receptors in autoimmunity: mechanisms for clinical diversity. Therapy. 2009;6:433–442. doi: 10.2217/thy.09.2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Celhar T, Magalhaes R, Fairhust A-M. TLR7 and TLR9 in SLE: when sensing self goes wrong. Immunol. Res. 2012;53:58–77. doi: 10.1007/s12026-012-8270-1. [DOI] [PubMed] [Google Scholar]
  • 7.Zeuner RA, Verthelyi D, Gursel M, Ishii KJ, Klinman DM. Influence of stimulatory and suppressive DNA motifs on host susceptibility to inflammatory arthritis. Arthritis Rheum. 2003;48:1701–1707. doi: 10.1002/art.11035. [DOI] [PubMed] [Google Scholar]
  • 8.O’Neill LAJ. Primer: Toll-like receptor signaling pathways-what do rheumatologists need to know? Nat. Clin. Pract. Rheumatol. 2008;4:319–327. doi: 10.1038/ncprheum0802. [DOI] [PubMed] [Google Scholar]
  • 9.Daubeuf B, Mathison J, Spiller S, Hugues S, Herren S, Ferlin W, Kosco-Vilbois M, Wagner H, Kirschning CJ, Ulevitch R, Elson G. TLR4/MD-2 monoclonal antibody therapy affords protection in experimental models of septic shock. J. Immunol. 2007;179:6107–6114. doi: 10.4049/jimmunol.179.9.6107. [DOI] [PubMed] [Google Scholar]
  • 10.Meng G, Rutz M, Schiemann M, Metzger J, Grabiec A, Schwandner R, Luppa PB, Ebel F, Busch DH, Bauer S, Wagner H, Kirschning CJ. Antagonistic antibody prevents toll-like receptor 2-driven lethal shock-like syndromes. J. Clin. Invest. 2004;113:1473–1481. doi: 10.1172/JCI20762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Vanags D, Williams B, Johnson B, Hall S, Nash P, Taylor A, Weiss J, Feeney D. Therapeutic efficacy and safety of chaperonin 10 in patients with rheumatoid arthritis: a double-blind randomized trial. Lancet. 2006;368:855–863. doi: 10.1016/S0140-6736(06)69210-6. [DOI] [PubMed] [Google Scholar]
  • 12.Hennessy EJ, Parker AE, O’Neill LAJ. Targeting Toll-like receptors: emerging therapeutics? Nat. Rev. Drug. Discov. 2010;9:293–307. doi: 10.1038/nrd3203. [DOI] [PubMed] [Google Scholar]
  • 13.Kuznik A, Bencina M, Svajger U, Jeras M, Rozman B. Mechanism of endosomal TLR inhibition by antimalarial drugs and imidazoquinolines. J. Immunol. 2011;186:4794–4804. doi: 10.4049/jimmunol.1000702. [DOI] [PubMed] [Google Scholar]
  • 14.Klinman DM, Zeuner R, Yamada H, Gursel M, Currie D, Gursul I. Regulation of CpG-induced immune activation by suppressive oligodeoxynucleotides. Ann. NY Acad. Sci. 2003;1002:112–123. doi: 10.1196/annals.1281.023. [DOI] [PubMed] [Google Scholar]
  • 15.Barrat FJ, Meeker T, Chan JH, Guiducci C, Coffman RL. Treatment of lupus-prone mice with a dual inhibitor of TLR7 and TLR9 leads to reduction of autoantibody production and amelioration of disease symptoms. Eur. J. Immunol. 2007;37:3582–3586. doi: 10.1002/eji.200737815. [DOI] [PubMed] [Google Scholar]
  • 16.Marshak-Rothstein A. Toll-like receptors in systemic autoimmune disease. Nat. Rev. Immunol. 2006;6:823–835. doi: 10.1038/nri1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Graham KL, Lee LY, Higgens JP, Steinmann L, Utz PJ, Ho PP. Treatment with a toll-like receptor inhibitory CpG oligonucleotide delays and attenuates lupus nephritis in NZB/W mice. Autoimmunity. 2010;43:140–155. doi: 10.3109/08916930903229239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Böldicke T. Blocking translocation of cell surface molecules from the ER to the cell surface by intracellular antibodies targeted to the ER. J. Cell Mol. Med. 2007;11:54–70. doi: 10.1111/j.1582-4934.2007.00002.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Böldicke T, Somplatzki S, Sergeev G, Mueller PP. Functional inhibition of transitory proteins by intrabody-mediated retention in the endoplasmatic reticulum. Methods. 2012;56:338–350. doi: 10.1016/j.ymeth.2011.10.008. [DOI] [PubMed] [Google Scholar]
  • 20.Bilanges B, Stokoe D. Direct comparison of the specificity of gene silencing using antisense oligonucleotides and RNAi. Biochem. J. 2005;388:573–583. doi: 10.1042/BJ20041956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Qiu S, Adema CM, Lane T. A computational study of off-target effects of RNA interference. Nucleic Acids Res. 2005;33:1834–1847. doi: 10.1093/nar/gki324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Cao T, Heng BC. Intracellular antibodies (intrabodies) versus RNA interference for therapeutic applications. Ann. Clin. Lab. Sci. 2005;35:227–229. [PubMed] [Google Scholar]
  • 23.Kirschning CJ, Dreher S, Maaß B, Fichte S, Schade J, Köster M, Noack A, Lindenmaier W, Wagner H, Böldicke T. Generation of anti-TLR2 intrabody mediating inhibition of macrophage surface TLR2 expression and TLR2-driven cell activation. BMC Biotechnol. 2010;10:31. doi: 10.1186/1472-6750-10-31. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Ahmad-Nejad P, Häcker H, Rutz M, Bauer S, Vabulas RM, Wagner H. Bacterial CpG-DNA and lipopolysaccharides activate Toll-like receptors at distinct cellular compartments. Eur. J. Immunol. 2002;32:1958–1968. doi: 10.1002/1521-4141(200207)32:7<1958::AID-IMMU1958>3.0.CO;2-U. [DOI] [PubMed] [Google Scholar]
  • 25.Böldicke T, Weber H, Mueller PP, Barleon B, Bernal M. Novel highly efficient intrabody mediates complete inhibition of cell surface expression of the human vascular endothelial growth factor receptor-2 (VEGFR-2/KDR) J. Immunol. Meth. 2005;300:146–159. doi: 10.1016/j.jim.2005.03.007. [DOI] [PubMed] [Google Scholar]
  • 26.Böldicke T, Tesar M, Griesel C, Rohde M, Gröne H-J, Waltenberger J, Kollet O, Lapidot T, Yayon A, Weich H. Single-chain antibodies recognizing the human vascular endothelial growth factor receptor-2 (VEGFR-2, flk-1) on the surface of primary endothelial cells and preselected CD34+ cells from cord blood. Stem Cells. 2001;19:24–36. doi: 10.1634/stemcells.19-1-24. [DOI] [PubMed] [Google Scholar]
  • 27.Mayer H, Bertram H, Lindenmaier W, Korff T, Weber H, Weich H. Vascular endothelial growth factor (VEGF-A) expression in human mesenchymal stem cells: autocrine and paracrine role on osteoblastic and endothelial differentiation. J. Cell Biochem. 2005;95:827–839. doi: 10.1002/jcb.20462. [DOI] [PubMed] [Google Scholar]
  • 28.Ospelt C, Gay S. TLRs and chronic inflammation. Int. J. Biochem. Cell Biol. 2010;42:495–505. doi: 10.1016/j.biocel.2009.10.010. [DOI] [PubMed] [Google Scholar]
  • 29.Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat. Rev. Genet. 2003;4:346–358. doi: 10.1038/nrg1066. [DOI] [PubMed] [Google Scholar]
  • 30.Swan CH, Bühler B, Steinberger P, Tschan MP, Barbas CF, III, Torbett BE. T-cell protection and enrichment through lentiviral CCR5 intrabody gene delivery. Gene Ther. 2006;13:1480–1492. doi: 10.1038/sj.gt.3302801. [DOI] [PubMed] [Google Scholar]
  • 31.Cerullo V, Seiler MP, Mane V, Brunetti-Pierri N, Clarke C, Bertin TK, Rodgers JR, Lee B. Toll-like receptor 9 triggers an innate immune response to helper-dependent adenoviral vectors. Mol. Ther. 2007;15:378–385. doi: 10.1038/sj.mt.6300031. [DOI] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES