Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2010 Jun 4;15(3):496–506. doi: 10.2478/s11658-010-0019-z

Integrin receptors play a role in the internalin B-dependent entry of Listeria monocytogenes into host cells

Clementina Auriemma 1, Maurizio Viscardi 1, Simona Tafuri 2, Luigi Michele Pavone 2, Federico Capuano 1, Laura Rinaldi 3, Rossella Della Morte 2, Giuseppe Iovane 1,3, Norma Staiano 2,
PMCID: PMC6275680  PMID: 20526749

Abstract

Listeria monocytogenes enters non-phagocytic cells by binding its surface proteins inlA (internalin) and inlB to the host’s E-cadherin and Met, respectively. The two internalins play either separate or cooperative roles in the colonization of infected tissues. Here, we studied bacterial uptake into HeLa cells using an L. monocytogenes mutant strain (ΔinlA) carrying a deletion in the gene coding for inlA. The ΔinlA mutant strain showed the capability to invade HeLa cells. The monoclonal anti-β3- and anti-β1-integrin subunit antibodies prevented bacterial uptake into the cells, while the anti-β2- and anti-β4-integrin subunit antibodies failed to affect L. monocytogenes entry into HeLa cells. Three structurally distinct disintegrins (kistrin, echistatin and flavoridin) also inhibited bacterial uptake, showing different potencies correlated to their selective affinity for the β3- and β1-integrin subunits. In addition to inducing Met phosphorylation, infection of cells by the L. monocytogenes ΔinlA mutant strain promoted the tyrosine phosphorylation of the focal adhesion-associated proteins FAK and paxillin. Our findings provide the first evidence that β3- and β1-integrin receptors play a role in the inlB-dependent internalization of L. monocytogenes into host cells.

Key words: Listeria monocytogenes, Internalin B, Integrins, FAK, Paxillin

Full Text

The Full Text of this article is available as a PDF (2.7 MB).

Abbreviations used

BHI

brain-heart infusion

BSA

bovine serum albumin

CFU

colony-forming unit

DMEM

Dulbecco’s modified Eagle’s medium

FAK

focal adhesion kinase

FBS

bovine fetal serum

InlA

internalin A

InlB

internalin B

MOI

multiplicity of infection

PBS

phosphate-buffered saline

SDS

sodium dodecyl sulphate

References

  • 1.Hamon M., Bierne H., Cossart P. Listeria monocytogenes: a multifaceted model. Nat. Rev. Microbiol. 2006;4:423–434. doi: 10.1038/nrmicro1413. [DOI] [PubMed] [Google Scholar]
  • 2.Ireton K. Entry of the bacterial pathogen Listeria monocytogenes into mammalian cells. Cell. Microbiol. 2997;9:1365–1375. doi: 10.1111/j.1462-5822.2007.00933.x. [DOI] [PubMed] [Google Scholar]
  • 3.Bierne H., Sabet C., Personnic N., Cossart P. Internalins: a complex family of leucine-rich repeat-containing proteins in Listeria monocytogenes. Microbes Infect. 2007;9:1156–1166. doi: 10.1016/j.micinf.2007.05.003. [DOI] [PubMed] [Google Scholar]
  • 4.Mengaud J., Ohayon H., Gounon P., Mege R.-M., Cossart P. E-cadherin is the receptor for internalin, a surface protein required for entry of L. monocytogenes into epithelial cells. Cell. 1996;84:923–932. doi: 10.1016/s0092-8674(00)81070-3. [DOI] [PubMed] [Google Scholar]
  • 5.Bonazzi M., Lecuit M., Cossart P. Listeria monocytogenes internalin and E-cadherin: from structure to pathogenesis. Cell. Microbiol. 2009;11:693–702. doi: 10.1111/j.1462-5822.2009.01293.x. [DOI] [PubMed] [Google Scholar]
  • 6.Shen Y., Naujokas M., Park M., Ireton K. InIB-dependent internalization of Listeria is mediated by the Met receptor tyrosine kinase. Cell. 2000;103:501–510. doi: 10.1016/s0092-8674(00)00141-0. [DOI] [PubMed] [Google Scholar]
  • 7.Pizarro-Cerdá J., Sousa S., Cossart P. Exploitation of host cell cytoskeleton and signalling during Listeria monocytogenes entry into mammalian cells. C. R. Biol. 2004;327:115–123. doi: 10.1016/j.crvi.2003.11.007. [DOI] [PubMed] [Google Scholar]
  • 8.Cossart P. Met, the HGF-SF receptor: another receptor for Listeria monocytogenes. Trends Microbiol. 2001;9:105–107. doi: 10.1016/s0966-842x(00)01943-0. [DOI] [PubMed] [Google Scholar]
  • 9.Eliceiri B.P. Integrin and growth factor receptor crosstalk. Circ. Res. 2001;89:1104–1110. doi: 10.1161/hh2401.101084. [DOI] [PubMed] [Google Scholar]
  • 10.Trusolino L., Bertotti A., Comoglio P.M. A signaling adapter function for alpha6beta4 integrin in the control of HGF-dependent invasive growth. Cell. 2001;107:643–654. doi: 10.1016/s0092-8674(01)00567-0. [DOI] [PubMed] [Google Scholar]
  • 11.Streuli C.H., Akhtar N. Signal co-operation between integrins and other receptor systems. Biochem. J. 2009;418:491–506. doi: 10.1042/BJ20081948. [DOI] [PubMed] [Google Scholar]
  • 12.Hynes R.O. Integrins: bidirectional, allosteric signaling machines. Cell. 2002;110:673–687. doi: 10.1016/s0092-8674(02)00971-6. [DOI] [PubMed] [Google Scholar]
  • 13.Sastry S.K., Burridge K. Focal adhesions: a nexus for intracellular signaling and cytoskeletal dynamics. Exp. Cell Res. 2000;261:25–36. doi: 10.1006/excr.2000.5043. [DOI] [PubMed] [Google Scholar]
  • 14.Dupuy A.G., Caron E. Integrin-dependent phagocytosis: spreading from microadhesion to new concepts. J. Cell Sci. 2008;121:1773–1783. doi: 10.1242/jcs.018036. [DOI] [PubMed] [Google Scholar]
  • 15.Vicente-Manzanares M., Choi C.K., Horwitz A.R. Integrins in cell migration-the actin connection. J. Cell Sci. 2009;122:199–206. doi: 10.1242/jcs.018564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Dersch P. Molecular and cellular mechanisms of bacterial entry into host cells. Contrib. Microbiol. 2003;10:183–209. doi: 10.1159/000068128. [DOI] [PubMed] [Google Scholar]
  • 17.Scibelli A., Roperto S., Manna L., Pavone L.M., Tafuri S., Della Morte R., Staiano N. Engagement of integrins as a cellular route of invasion by bacterial pathogens. Vet. J. 2007;173:482–491. doi: 10.1016/j.tvjl.2006.01.010. [DOI] [PubMed] [Google Scholar]
  • 18.Kwok T., Zabler D., Urman S., Rohde M., Hartig R., Wessler S., Misselwitz R., Berger J., Sewald N., König W., Backert S. Helicobacter exploits integrin for type IV secretion and kinase activation. Nature. 2007;449:862–866. doi: 10.1038/nature06187. [DOI] [PubMed] [Google Scholar]
  • 19.Bergmann B., Raffelsbauer D., Kuhn M., Goetz M., Hom S., Goebel W. InlA- but not InlB-mediated internalization of Listeria monocytogenes by non-phagocytic mammalian cells needs the support of other internalins. Mol. Microbiol. 2002;43:557–570. doi: 10.1046/j.1365-2958.2002.02767.x. [DOI] [PubMed] [Google Scholar]
  • 20.McLane M.A., Marcinkiewicz C., Vijay-Kumar S., Wierzbicka-Patynowski I., Niewiarowski S. Viper venom disintegrins and related molecules. Proc. Soc. Exp. Biol. Med. 1998;219:109–119. doi: 10.3181/00379727-219-44322. [DOI] [PubMed] [Google Scholar]
  • 21.Scibelli A., Matteoli G., Roperto S., Alimenti E., Dipineto L., Pavone L.M., Della Morte R., Menna L.F., Fioretti A., Staiano N. Flavoridin inhibits Yersinia enterocolitica uptake into fibronectin-adherent HeLa cells. FEMS Microbiol. Lett. 2005;247:51–57. doi: 10.1016/j.femsle.2005.04.024. [DOI] [PubMed] [Google Scholar]
  • 22.Lu X., Lu D., Scully M.F., Kakkar V.V. Modulation of integrin-binding selectivity by mutation within the RGD-loop of snake venom proteins: a novel drug development approach. Curr. Med. Chem. Cardiovasc. Hematol. Agents. 2003;1:89–196. doi: 10.2174/1568016033477522. [DOI] [PubMed] [Google Scholar]
  • 23.Senn H., Klaus W. The nuclear magnetic resonance solution structure of flavoridin, an antagonist of the platelet GP IIb-IIIa receptor. J. Mol. Biol. 1993;232:907–925. doi: 10.1006/jmbi.1993.1439. [DOI] [PubMed] [Google Scholar]
  • 24.Schaller M.D. Biochemical signals and biological responses elicited by the focal adhesion kinase. Biochim. Biophys. Acta. 2001;1540:1–21. doi: 10.1016/s0167-4889(01)00123-9. [DOI] [PubMed] [Google Scholar]
  • 25.Hamadi A., Bouali M., Dontenwill M., Stoeckel H., Takeda K., Rondé P. Regulation of focal adhesion dynamics and disassembly by phosphorylation of FAK at tyrosine 397. J. Cell Sci. 2005;118:4415–4425. doi: 10.1242/jcs.02565. [DOI] [PubMed] [Google Scholar]
  • 26.Staiano N., Garbi C., Squillacioti C., Esposito S., Di Martino E., Belisario M.A., Nitsch L., Di Natale P. Echistatin induces decrease of pp125FAK phosphorylation, disassembly of actin cytoskeleton and focal adhesions, and detachment of fibronectin-adherent melanoma cells. Eur. J. Cell Biol. 1997;73:298–305. [PubMed] [Google Scholar]
  • 27.Della Morte R., Squillacioti C., Garbi C., Derkinderen P., Belisario M.A., Girault J.A., Di Natale P., Nitsch L., Staiano N. Echistatin inhibits pp125FAK autophosphorylation, paxillin phosphorylation and pp125FAK-paxillin interaction in fibronectin-adherent melanoma cells. Eur. J. Biochem. 2000;267:5047–5054. doi: 10.1046/j.1432-1327.2000.01561.x. [DOI] [PubMed] [Google Scholar]
  • 28.van Nimwegen M.J., van de Water B. Focal adhesion kinase: a potential target in cancer therapy. Biochem. Pharmacol. 2007;73:597–609. doi: 10.1016/j.bcp.2006.08.011. [DOI] [PubMed] [Google Scholar]
  • 29.McCall-Culbreath K. D., Li Z., Zutter M.M. Crosstalk between the alpha2beta1 integrin and c-met/HGF-R regulates innate immunity. Blood. 2008;111:3562–3570. doi: 10.1182/blood-2007-08-107664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Cabodi S., Moro L., Bergatto E., Boeri Erba E., Di Stefano P., Turco E., Tarone G., Defilippi P. Integrin regulation of epidermal growth factor (EGF) receptor and of EGF-dependent responses. Biochem. Soc. Trans. 2004;32:438–442. doi: 10.1042/BST0320438. [DOI] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES