Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2010 Jan 29;15(2):215–233. doi: 10.2478/s11658-010-0002-8

The physiological and morphological phenotype of a yeast mutant resistant to the quaternary ammonium salt N-(dodecyloxycarboxymethyl)-N,N,N-trimethyl ammonium chloride

Ewa Obłąk 1,, Andrzej Gamian 2,3, Ryszard Adamski 1, Stanisław Ułaszewski 1
PMCID: PMC6275694  PMID: 20140761

Abstract

We investigated the action of the quaternary ammonium salt (QAS) called IM (N-(dodecyloxycarboxymethyl)-N,N,N-trimethyl ammonium chloride) on Saccharomyces cerevisiae yeast cells. Changes in the yeast cell ultrastructure were confirmed by electron microscopy. We treated resistant mutant cells with QAS, and confirmed destruction of the mutant cytoplasm, an increase in the thickness of the cell wall, separation of the cell wall from the cytoplasm, and the accumulation of numerous lipid droplets. We also observed a relatively high production of lipids in the cells of the parental wild-type strain Σ1278b and in its IM-resistant (IMR) mutant in the presence of the QAS. The IMR mutant showed increased sensitivity to CaCl2 and SDS, and resistance to ethidium bromide, chloramphenicol, erythromycin and osmotic shock. It also tolerated growth at low pH. We suggest that the resistance to IM could be connected with the level of permeability of the cell membrane because the IMR mutant was sensitive to this compound in vivo in the presence of SDS and guanidine hydrochloride, which cause increased permeability of the cell plasma membrane.

Key words: Quaternary ammonium salts, Drug resistance, Saccharomyces cerevisiae

Full Text

The Full Text of this article is available as a PDF (18.7 MB).

Abbreviations used

HBV

human hepatitis B virus

IM

(N-(dodecyloxycarboxymethyl)-N,N,N-trimethyl ammonium chloride)

QAS

quaternary ammonium salt

References

  • 1.Xiao Y., Chen J., Fang M., Xing X., Wang H., Wang Y., Li F. Antibacterial effects of three experimental quaternary ammonium salt (QAS) monomers on bacteria associated with oral infections. J. Oral Sci. 2008;50:323–327. doi: 10.2334/josnusd.50.323. [DOI] [PubMed] [Google Scholar]
  • 2.Thorsteinsson T., Masson M., Kristinsson K.G., Hjalmarsdottir M.A., Hilmarsson H., Loftsson T. Soft antimicrobial agents: Synthesis and activity of labile environmentally friendly long chain quaternary ammonium compounds. J. Med. 2003;46:4173–4181. doi: 10.1021/jm030829z. [DOI] [PubMed] [Google Scholar]
  • 3.Massi L., Guittard F., Geribaldi S. Quaternary bisammonium fluorosurfactants for antimicrobial devices. Progr. Colloid Polymer Sci. 2004;124:190–193. [Google Scholar]
  • 4.Mc Donnell G., Russell A.D. Antiseptics and disinfectants activity, action and resistance. Clin. Microbiol. Rev. 1999;12:147–179. doi: 10.1128/cmr.12.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Kourai H., Yabuhara T., Shirai A., Maeda T., Nagamune H. Syntheses anitimicrobial activities of a series of new bis-quaternaty ammonium compounds. Eur. J. Med. Chem. 2006;41:437–444. doi: 10.1016/j.ejmech.2005.10.021. [DOI] [PubMed] [Google Scholar]
  • 6.Denyer S.P. Mechanism of action of antibacterial biocides. Int. Biodeterior. Biodegrad. 1995;36:227–245. doi: 10.1016/0964-8305(96)00015-7. [DOI] [Google Scholar]
  • 7.Ohkawa K., Kim H., Lee K. Biodegradation of electrospun poly (e-caprolactone) non-woven fabrics by pure-cultured soil filamentous fungi. J. Polym. Env. 2004;12:211–218. doi: 10.1007/s10924-004-8148-y. [DOI] [Google Scholar]
  • 8.Lee C. Structure, conformation and action of neuromuscular blocking drugs. Br. J. Anaesth. 2001;8:7755–7769. doi: 10.1093/bja/87.5.755. [DOI] [PubMed] [Google Scholar]
  • 9.Koyama K., Shimazu Y. Benzalkonium chlorides. Drugs and Poisons in Humans. 2005;23:407–413. doi: 10.1007/3-540-27579-7_45. [DOI] [Google Scholar]
  • 10.Debbash C., de Saint Jean M., Pisella P.J., Warnet J., Baudouin C. Quaternary ammonium cytotoxity in a human conjunctinal cell line. J. Fr. Ophtalmol. 1999;22:950–958. [PubMed] [Google Scholar]
  • 11.Petrocci A.N. Surface-active agents: quaternary ammonium compounds. In: Block S.S., editor. Disinfection, sterilization and preservation. Philadelpha: Lea and Febiger.; 1983. pp. 309–329. [Google Scholar]
  • 12.Hugo W.B., Frier M. Mode of action of the antibacterial compound dequalinium acetate. Appl. Microbiol. 1969;17:118–127. doi: 10.1128/am.17.1.118-127.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Hugo W.B. Disinfection mechanisms. In: Russell A.D., Hugo W.B., Ayliffe G.A.J., editors. Principles and practice of disinfection, preservation and sterilization. 3rd ed. Oxford: Blackwell Science; 1999. pp. 258–283. [Google Scholar]
  • 14.Cabral J.P.S. Mode of antibacterial action of dodine (dodecylguanidine monoacetate) in Pseudomonas syringae. Can. J. Microbiol. 1991;38:115–123. doi: 10.1139/m92-019. [DOI] [PubMed] [Google Scholar]
  • 15.Hiom S.J., Furr J.R., Russell A.D., Dickinson J.R. Effects of chlorhexidine diacetate and cetylpyridinium chloride on whole cells and protoplasts of Saccharomyces cerevisiae. Microbios. 1993;74:111–120. [PubMed] [Google Scholar]
  • 16.Russell A.D. Bacterial spores and chemical sporicidal agents. Clin. Microbiol. Rev. 1990;3:99–119. doi: 10.1128/cmr.3.2.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Russell A.D. Activity of biocides against mycobacteria. J. Appl. Bacteriol. Symp. Suppl. 1996;81:87S–101S. [PubMed] [Google Scholar]
  • 18.Springthorpe V.S., Grenier J.L., Lloyd-Evans N., Sattar S.A. Chemical disinfection of human rotaviruses: efficacy of commercially-available products in suspension tests. J. Hyg. 1986;97:139–161. doi: 10.1017/S0022172400064433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Springthorpe V.S., Satter S.A. Chemical disinfection of viruscontaminated surfaces. Crit. Rev. Environ. Control. 1990;20:169–229. doi: 10.1080/10643389009388396. [DOI] [Google Scholar]
  • 20.Prince D.L., Prince H.N., Thraenhart O., Muchmore E., Bonder E., Pugh J. Methodological approaches to disinfection of human hepatitis B virus. J. Clin. Microbiol. 1993;31:3296–3304. doi: 10.1128/jcm.31.12.3296-3304.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Maillard J.Y. Mechanisms of viricidal action. In: Russell A.D., Hugo W.B., Ayliffe G.A.J., editors. Principles and Practice of Disinfection, Preservation and Sterilization. Oxford: Blackwell Science; 1999. pp. 207–221. [Google Scholar]
  • 22.Maillard J.Y., Beggs T.S., Day M.J., Hudson R.A., Russell A.D. Damage to Pseudomonas aeruginosa PAO1 bacteriophage F116 DNA by biocides. J. Appl. Bacteriol. 1996;80:540–554. doi: 10.1111/j.1365-2672.1996.tb03254.x. [DOI] [PubMed] [Google Scholar]
  • 23.Mitchell B.A., Paulsen I.T., Brown M.H., Skurray R.A. Bioenergetics of the staphylococcal multidrug export protein QacA: identification of distinct binding sites for monovalent and divalent cations. J. Biol. Chem. 1999;274:3541–3548. doi: 10.1074/jbc.274.6.3541. [DOI] [PubMed] [Google Scholar]
  • 24.Rogers B., Decottignies A., Kolaczkowski M., Carvajal E., Balzi E., Goffeau A. The pleitropic drug ABC transporters from Saccharomyces cerevisiae. J. Mol. Microbiol. Biotechnol. 2001;3:207–214. [PubMed] [Google Scholar]
  • 25.Kolaczkowski M., Kolaczkowska A., Łuczynski J., Witek S., Goffeau A. In vivo characterization of the drug resistance profile of the major ABC transporters and other components of the yeast pleiotropic drug resistance network. Microb. Drug Resist. 1998;4:143–158. doi: 10.1089/mdr.1998.4.143. [DOI] [PubMed] [Google Scholar]
  • 26.Yang Y.L., Lo H.J. Mechanisms of antifungal agent resistance. J. Microbiol. Immunol. Infect. 2001;34:79–86. [PubMed] [Google Scholar]
  • 27.Obłąk E., Lachowicz T.M., Łuczyński J., Witek S. Comparative studies of biological activities of the lysosomotropic aminoesters and quaternary ammonium salts on yeast Saccharomyces cerevisiae. Cell. Mol. Biol. Lett. 2001;6:871–880. [Google Scholar]
  • 28.Obłąk E., Lachowicz T.M., Łuczyński J., Witek S. Lysosomotropic N,N-dimethyl α-aminoacid n-alkylesters and their quaternary ammonium salts as plasma membrane and mitochondrial ATPases inhibitors. Cell. Mol. Biol. Lett. 2002;7:1121–1129. [PubMed] [Google Scholar]
  • 29.Lachowicz T.M., Witkowska R., Obłąk E. Amino acid auxotrophy increases sensitivity of Saccharomyces cerevisiae to a quaternary ammonium salt IM. Acta Microbiol. Polon. 1990;39:157–162. [PubMed] [Google Scholar]
  • 30.Lachowicz T.M., Obłąk E., Piątkowski J. Auxotrophy stimulated sensitivity to quaternary ammonium salts and its relation to active transport in yeast. Bul. Pol. Acad. Sci. Biol. Sci. 1992;40:173–182. [Google Scholar]
  • 31.Obłąk, E., Ułaszewski, S., Morawiecki, A., Witek, S., Witkowska, R., Majcher, K. and Lachowicz, T.M. Quaternary ammonium salt resistant mutants in yeast Saccharomyces cerevisiae. Yeast 5 Spec. Iss. (1989) 273–278. [PubMed]
  • 32.Obłąk E., Ułaszewski S., Lachowicz T.M. Mutants of Saccharomyces cerevisiae resistant to a quaternary ammonium salt. Acta Microbiol. Polon. 1988;37:261–269. [PubMed] [Google Scholar]
  • 33.Obłąk E., Adamski R., Lachowicz T.M. pH-dependent influence of a quaternary ammonium salt and an aminoester on the yeast Saccharomyces cerevisiae ultrastructure. Cell. Mol. Biol. Lett. 2003;8:105–110. [PubMed] [Google Scholar]
  • 34.Obłąk E., Bącal J., Lachowicz T.M. A quaternary ammonium salt as an inhibitor of plasma membrane H+-ATPase in yeast Saccharomyces cerevisiae. Cell. Mol. Biol. Lett. 2000;5:315–324. [Google Scholar]
  • 35.Obłąk E., Lachowicz T.M., Witek S. D. L-leucine transport in a Saccharomyces cerevisiae mutant resistant to quaternary ammonium salts. Folia Microbiol. 1996;41:116–119. doi: 10.1007/BF02816365. [DOI] [PubMed] [Google Scholar]
  • 36.Rucka M., Oświęcimska M., Witek S. New biocides for cooling water treatment. II. Quaternary ammonium salts derivatives of glycine esters. Envir. Protec. Eng. 1983;9:25–31. [Google Scholar]
  • 37.Reynolds E.W. The use of lead citrate at high pH as an electron — opaque stain electron microscopy. J. Cell. Biol. 1963;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Kates M. Laboratory Techniques in Biochemistry and Molecular Biology. Amsterdam: Elsevier; 1986. pp. 106–107. [Google Scholar]
  • 39.Paściak M., Ekiel I., Grzegorzewicz A., Mordarska H., Gamian A. Structure of the major glycolipid from Rothia dentocariosa. Biochim. Biophys. Acta. 2002;1594:199–205. doi: 10.1016/s0167-4838(01)00301-6. [DOI] [PubMed] [Google Scholar]
  • 40.Panaretou B., Piper P.W. Plasma membrane ATPase action affects several stress tolerances of Saccharomyces cerevisiae and Schizozaccharomyces pombe as well as the extent and duration of the heat shock response. J. Gen. Microbiol. 1990;136:1763–1770. [Google Scholar]
  • 41.Ogur M., Roshanmanesh A., Ogur S. Tricarboxylic acid cycle mutants in Saccharomyces cerevisiae. Comparison of independently derived mutants. Science. 1965;147:1590. doi: 10.1126/science.147.3665.1590. [DOI] [PubMed] [Google Scholar]
  • 42.Machnicka B., Grochowalska R., Boniewska-Biernacka E., Słomińska L., Lachowicz T.M. Acid excreting mutants of yeast Saccharomyces cerevisiae. Biochim. Biophys. Res. Commun. 2004;325:1030–1036. doi: 10.1016/j.bbrc.2004.10.130. [DOI] [PubMed] [Google Scholar]
  • 43.Panaretou B., Piper P.W. The plasma membrane of yeast acquires a novel heat-shock protein (hsp30) and displays a decline in proton pumping ATPase levels in response to both heat-shock and the entry to stationary phase. Eur. J. Biochem. 1992;206:635–640. doi: 10.1111/j.1432-1033.1992.tb16968.x. [DOI] [PubMed] [Google Scholar]
  • 44.Viegas C.A., Sebastiao P.B., Nunes A.G., Sacorreia I. Activation of plasma membrane H+-ATPase and expression of PMA1 and PMA2 genes in Saccharomyces cerevisiae cells grown at supraoptimal temperatures. Appl. Environ. Microbiol. 1995;61:1904–1909. doi: 10.1128/aem.61.5.1904-1909.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Coote P.J., Jones M.V., Seymour I.J., Rowe D.L., Ferdinando D.P., McArtur A.J., Cole M.B. Activity of plasma membrane H+-ATPase is a key physiological determinant of thermotolerance in Saccharomyces cerevisiae. Microbiology. 1994;140:1881–1890. doi: 10.1099/13500872-140-8-1881. [DOI] [PubMed] [Google Scholar]
  • 46.Shin D.Y., Matsumoto K., Iida H., Uno I., Ishikawa T. Heat shock response of Saccharomyces cerevisiae mutants altered in cyclic AMPdependent protein phosphorylation. Mol. Cell. Biol. 1987;7:244–250. doi: 10.1128/mcb.7.1.244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Iida H., Yahara Y. Durable synthesis of high molecular weight heat shock proteins in Go cells of yeast and other eukaryotes. J. Cell. Biol. 1984;99:199–207. doi: 10.1083/jcb.99.1.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Russell A.D. Mechanisms of bacterial resistance to biocides. Int. Biodeterior. Biodegrad. 1995;36:247–265. doi: 10.1016/0964-8305(95)00056-9. [DOI] [Google Scholar]
  • 49.Nikaido H. Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science. 1994;264:382–388. doi: 10.1126/science.8153625. [DOI] [PubMed] [Google Scholar]
  • 50.Ghannoum M.A., Rice L.B. Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin. Microbiol. Rev. 1999;12:501–517. doi: 10.1128/cmr.12.4.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Guérin-Méchin L., Leveau J.Y., Dubois-Brissonnet F. Resistance of spheroplasts and whole cells of Pseudomonas aeruginosa to bactericidal activity of various biocides: evidence of the membrane implication. Microbiol. Res. 2004;159:51–57. doi: 10.1016/j.micres.2004.01.003. [DOI] [PubMed] [Google Scholar]
  • 52.Gupta A.K., Ahmad I., Summerbell R.C. Fungicidal activities of commonly used disinfectants and antifungal pharmaceutical spray preparations against clinical strains of Aspergillus and Candida species. Med. Mycol. 2002;40:201–208. doi: 10.1080/mmy.40.2.201.208. [DOI] [PubMed] [Google Scholar]
  • 53.Shirai A., Sumitomo T., Kurimoto M., Maseda H., Kourai H. The mode of the antifungal activity of gemini-pyridinium salt against yeast. Biocontrol. Sci. 2009;14:13–20. doi: 10.4265/bio.14.13. [DOI] [PubMed] [Google Scholar]
  • 54.Walker G.M. Yeast physiology and biotechnology. England: John Wiley & Sons Ltd. Chichester; 1998. pp. 169–231. [Google Scholar]
  • 55.Van der Rest M.E., Kamminga A.H., Nakano A., Anraku Y., Poolman B., Konings W.N. The plasma membrane of Saccharomyces cerevisiae: structure, function, and biogenesis. Microbiol. Rev. 1995;59:304–322. doi: 10.1128/mr.59.2.304-322.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Baranowska H., Polanowska R., Putrament A. Spontaneous and induced non-specific drug resistance in Saccharomyces cerevisia. Acta Microb. Polon. 1979;23:181–201. [PubMed] [Google Scholar]
  • 57.Dubnicková M., Rezanka T., Koscová H. Adaptive changes in fatty acids of E. coli strains exposed to a quaternary ammonium salt and an amine oxide. Folia Microbiol. 2006;51:371–374. doi: 10.1007/BF02931578. [DOI] [PubMed] [Google Scholar]
  • 58.Guérin-Méchin L., Dubois-Brissonnet F., Hedyd B., Leveau J.Y. Specific variations of fatty acid composition of Pseudomonas aeruginosa ATCC 15442 induced by quaternary ammonium compounds and relation with resistance to bactericidal activity. J. Appl. Microbiol. 1999;87:735–742. doi: 10.1046/j.1365-2672.1999.00919.x. [DOI] [PubMed] [Google Scholar]
  • 59.Kolaczkowska A., Kolaczkowski M., Goffeau A., Moye-Rowley W.S. Compensatory activation of the multidrug transporters Pdr5p, Sng2p, and Yor1p by Pdr1 in Saccharomyces cerevisiae. FEBS Lett. 2008;582:977–983. doi: 10.1016/j.febslet.2008.02.045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Van den Hazel H.B., Pichler H., do Valle Matta M.A., Leitner E., Goffeau A., Daum G. PDR16 and PDR17, two homologous genes of Saccharomyces cerevisiae, affect lipid biosynthesis and resistance to multiple drugs. J. Biol. Chem. 1999;274:1934–1941. doi: 10.1074/jbc.274.4.1934. [DOI] [PubMed] [Google Scholar]
  • 61.Hallstrom T.C., Lambert L., Schorling L., Balzi E., Goffeau A., Moye-Rowley W.S. Coordinate control of sphingo lipid biosynthesis and multidrug resistance in Saccharomyces cerevisiae. J. Biol. Chem. 2001;276:23674–23680. doi: 10.1074/jbc.M101568200. [DOI] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES