Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2006 Mar 1;11(1):109. doi: 10.2478/s11658-006-0011-9

Degradation and beyond: Control of androgen receptor activity by the proteasome system

Tomasz Jaworski 1,
PMCID: PMC6275697  PMID: 16847754

Abstract

The androgen receptor (AR) is a transcription factor belonging to the family of nuclear receptors which mediates the action of androgens in the development of urogenital structures. AR expression is regulated post-translationally by the ubiquitin/proteasome system. This regulation involves more complex mechanisms than typical degradation. The ubiquitin/proteasome system may regulate AR via mechanisms that do not engage in receptor turnover. Given the critical role of AR in sexual development, this complex regulation is especially important. Deregulation of AR signalling may be a causal factor in prostate cancer development. AR is the main target in prostate cancer therapies. Due to the critical role of the ubiquitin/proteasome system in AR regulation, current research suggests that targeting AR degradation is a promising approach.

Key words: AR, Degradation, Prostate cancer, Proteasome, Transcription, Ubiquitin

Full Text

The Full Text of this article is available as a PDF (509.4 KB).

Abbreviations used

AATF

apoptosis antagonizing factor

APIS complex

AAA proteins independent of 20S

ARA54

AR-associated protein 54

ARA70

AR-associated protein 70

ARE

androgen responsive element

ARNIP

AR N-terminal interacting protein

bFGF

basic fibroblast growth factor

CARM1

coactivator-associated arginine methyltransferase 1

CHIP

C-terminus Hsp70 interacting protein

DBD

DNA binding domain

E6-AP

E6-associated protein

GRIP-1

glucocorticoid receptor interacting protein 1

GSK3β

glycogen synthase kinase 3β

HDAC1

histone deacetylase 1

HECT

homologous to the E6-AP C-terminus

HEK293

human embryonal kidney cell line

HepG2

human hepatoma cell line

Hsp90

heat shock protein 90

IGF-1

insulin-like growth factor 1

IL-6

interleukin 6

KLK2

kallikrein 2

KLKK

lysine (K), leucine (L)

LBD

ligand binding domain

LNCaP

lymph node carcinoma of prostate cell line

MAPK

mitogen activated protein kinase

Mdm2

Murine double minute 2

NcoR

nuclear receptor corepressor

NEDD8

neural precursor cell-expressed developmentally down-regulated

NLS

nuclear localisation signal

p/CAF

p300/CBP-associated factor

p300/CBP

CREB-binding protein

PC3

human prostate carcinoma cell line

PEST

proline (P), glutamic acid (E), serine (S), threonine (T)

PI3K

phosphoinositide-3 kinase

PIAS1

protein inhibitor of activated STAT

PKA

protein kinase A

PKC

protein kinase C

PR

progesterone receptor

PRMT1

protein arginine methyltransferase 1

PROTAC

proteolysis targeting chimeric molecule

PSA

prostate specific antigen

PSMA7

proteasome alpha subunit 7

P-TEFb

positive transcription elongation factor b

PTEN

phosphatase and tensin homolog deleted on chromosome 10

RING

really interesting new gene

RNA Pol II

RNA polymerase II

SCF ligase

Skp2/cullin1/F-box

SMRT

silencing mediator of retinoic acid and thyroid hormone receptor

SNURF

small nuclear RING finger

SRC1

steroid receptor coactivator 1

Sugl

suppressor of Gal

SUMO

small ubiquitin-like modifier

SWI/SNF

mating type switching/sucrose non-fermenting

TBL1

transducin-β-like

TBLR1

transduction-β-like-related protein

TBP

TATA binding protein

TFIIB, D, F, H

general transcription factors

TRAP

thyroid hormone receptor-associated protein

TSG101

tumour susceptibility gene 101

UAC

ubiquitin activating enzyme

UBC

ubiquitin conjugating enzyme

References

  • 1.Wilson J.D., George F.W., Griffin J.E. The hormonal control of sexual development. Science. 1981;211:1278–1284. doi: 10.1126/science.7010602. [DOI] [PubMed] [Google Scholar]
  • 2.Quigley C.A., De Bellis A., Marschke K.B., El-Awady M.K., Wilson E.M., French F.S. Androgen receptor defects: historical, clinical and molecular perspectives. Endocr. Rev. 1995;16:271–321. doi: 10.1210/er.16.3.271. [DOI] [PubMed] [Google Scholar]
  • 3.Grossmann M.E., Huang H., Tindall D.J. Androgen receptor signaling in androgen-refractory prostate cancer. J. Natl. Cancer Inst. 2001;93:1687–1697. doi: 10.1093/jnci/93.22.1687. [DOI] [PubMed] [Google Scholar]
  • 4.Jemal A., Murray T., Ward E., Samuels A., Tiwari R.C., Ghafoor A., Feuer E.J., Thun M.J. Cancer statistics, 2005. CA Cancer J. Clin. 2005;55:10–30. doi: 10.3322/canjclin.55.1.10. [DOI] [PubMed] [Google Scholar]
  • 5.www.nursa.org
  • 6.MacLean H.E., Warne G.L., Zajac J.D. Localization of functional domains in the androgen receptor. J. Steroid Biochem. Mol. Biol. 1997;62:233–242. doi: 10.1016/S0960-0760(97)00049-6. [DOI] [PubMed] [Google Scholar]
  • 7.Vanaja D.K., Mitchell S.H., Toft D.O., Young C.Y. Effect of geldanamycin on androgen receptor function and stability. Cell Stress Chaperones. 2002;7:55–64. doi: 10.1379/1466-1268(2002)007<0055:EOGOAR>2.0.CO;2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Shang Y., Myers M., Brown M. Formation of androgen receptor transcription complex. Mol. Cell. 2002;9:601–610. doi: 10.1016/S1097-2765(02)00471-9. [DOI] [PubMed] [Google Scholar]
  • 9.Asirvatham A.J., Schmidt M., Gao B., Chaudhary J. Androgens regulate the immune/inflammatory response and cell survival pathways in rat ventral prostate epithelial cells. Endocrinology. 2006;147:257–271. doi: 10.1210/en.2005-0942. [DOI] [PubMed] [Google Scholar]
  • 10.Burnstein K.L. Regulation of androgen receptor levels: Implications for prostate cancer progression and therapy. J. Cell. Biochem. 2005;95:657–669. doi: 10.1002/jcb.20460. [DOI] [PubMed] [Google Scholar]
  • 11.Yeap B.B., Wilce J.A., Leedman P.J. The androgen receptor mRNA. BioEssays. 2004;26:672–682. doi: 10.1002/bies.20051. [DOI] [PubMed] [Google Scholar]
  • 12.Heinlein C.A., Chang C. Androgen receptor (AR) coregulators: an overview. Endocr. Rev. 2002;23:175–200. doi: 10.1210/er.23.2.175. [DOI] [PubMed] [Google Scholar]
  • 13.Smith C.L., O’Malley B.W. Coregulator function: a key to understanding tissue specificity of selective receptor modulators. Endocr. Rev. 2004;25:45–71. doi: 10.1210/er.2003-0023. [DOI] [PubMed] [Google Scholar]
  • 14.Sheflin L., Keegan B., Zhang W., Spaulding S.W. Inhibiting proteasomes in human HepG2 and LNCaP cells increases endogenous androgen receptor levels. Biochem. Biophys. Res. Commun. 2000;276:144–150. doi: 10.1006/bbrc.2000.3424. [DOI] [PubMed] [Google Scholar]
  • 15.Pickart C.M. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 2001;70:503–533. doi: 10.1146/annurev.biochem.70.1.503. [DOI] [PubMed] [Google Scholar]
  • 16.Thrower J.S., Hoffman L., Rechsteiner M., Pickart C.M. Recognition of the polyubiquitin proteolytic signal. EMBO J. 2000;19:94–102. doi: 10.1093/emboj/19.1.94. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Nawaz Z., Lonard D.M., Smith C.L., Lev-Lehman E., Tsai S.Y., Tsai M.J., O’Malley B.W. The Angelman syndrome-associated protein, E6-AP, is a coactivator for the nuclear hormone receptor superfamily. Mol. Cell. Biol. 1999;19:1182–1189. doi: 10.1128/mcb.19.2.1182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Smith C.L., DeVera D.G., Lamb D.J., Nawaz Z., Jiang Y.H., Beaudet A.L., O’Malley B.W. Genetic ablation of the steroid receptor coactivator-ubiquitin ligase, E6-AP, results in tissue-selective steroid hormone resistance and defects in reproduction. Mol. Cell. Biol. 2002;22:525–535. doi: 10.1128/MCB.22.2.525-535.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Verma S., Ismail A., Gao X., Fu G., Li X., O’Malley B.W., Nawaz Z. The ubiquitin-conjugating enzyme UBCH7 acts as a coactivator for steroid hormone receptors. Mol. Cell. Biol. 2004;24:8716–8726. doi: 10.1128/MCB.24.19.8716-8726.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Beitel L.K., Elhaji Y.A., Lumbroso R., Wing S.S., Panet-Raymond V., Gottlieb B., Pinsky L., Trifiro M.A. Cloning and characterization of an androgen receptor N-terminal-interacting protein with ubiquitin-protein ligase activity. J. Mol. Endocrinol. 2002;29:41–60. doi: 10.1677/jme.0.0290041. [DOI] [PubMed] [Google Scholar]
  • 21.Kang H.Y., Yeh S., Fujimoto N., Chang C. Cloning and characterization of human prostate coactivator ARA54, a novel protein that associates with the androgen receptor. J. Biol. Chem. 1999;274:8570–8576. doi: 10.1074/jbc.274.13.8570. [DOI] [PubMed] [Google Scholar]
  • 22.Ito K., Adachi S., Iwakami R., Yasuda H., Muto Y., Seki N., Okano Y. N-Terminally extended human ubiquitin-conjugating enzymes (E2s) mediate the ubiquitination of RING-finger proteins, ARA54 and RNF8. Eur. J. Biochem. 2001;268:2725–2732. doi: 10.1046/j.1432-1327.2001.02169.x. [DOI] [PubMed] [Google Scholar]
  • 23.Lin H.K., Wang L., Hu Y.C., Altuwaijri S., Chang C. Phosphorylation-dependent ubiquitylation and degradation of androgen receptor by Akt require Mdm2 E3 ligase. EMBO J. 2002;21:4037–4048. doi: 10.1093/emboj/cdf406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Moilanen A.M., Karvonen U., Poukka H., Yan W., Toppari J., Jänne O.A., Palvimo J.J. A testis-specific androgen receptor coregulator that belongs to a novel family of nuclear proteins. J. Biol. Chem. 1999;274:3700–3704. doi: 10.1074/jbc.274.6.3700. [DOI] [PubMed] [Google Scholar]
  • 25.Poukka H., Aarnisalo P., Karvonen U., Palvimo J.J., Jänne O.A. Ubc9 interacts with the androgen receptor and activates receptor-dependent transcription. J. Biol. Chem. 1999;274:19441–19446. doi: 10.1074/jbc.274.27.19441. [DOI] [PubMed] [Google Scholar]
  • 26.Poukka H., Karvonen U., Jänne O.A., Palvimo J.J. Covalent modification of the androgen receptor by small ubiquitin-like modifier 1 (SUMO-1) Proc. Natl. Acad. Sci. USA. 2000;97:14145–14150. doi: 10.1073/pnas.97.26.14145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Nishida T., Yasuda H. PIAS1 and PIASxα function as SUMO-E3 ligases toward androgen receptor and repress androgen receptor-dependent transcription. J. Biol. Chem. 2002;277:41311–41317. doi: 10.1074/jbc.M206741200. [DOI] [PubMed] [Google Scholar]
  • 28.Moilanen A.M., Poukka H., Karvonen U., Häkli M., Jänne O.A., Palvimo J.J. Identification of a novel RING finger protein as a coregulator in steroid receptor-mediated gene transcription. Mol. Cell. Biol. 1998;18:5128–3519. doi: 10.1128/mcb.18.9.5128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Poukka H., Karvonen U., Yoshikawa N., Tanaka H., Palvimo J.J., Jänne O.A. The RING finger protein SNURF modulates nuclear trafficking of the androgen receptor. J. Cell. Sci. 2000;113:2991–3001. doi: 10.1242/jcs.113.17.2991. [DOI] [PubMed] [Google Scholar]
  • 30.Häkli M., Lorick K.L., Weissman A.M., Jänne O.A., Palvimo J.J. Transcriptional coregulator SNURF (RNF4) possesses ubiquitin E3 ligase activity. FEBS Letters. 2004;560:56–62. doi: 10.1016/S0014-5793(04)00070-5. [DOI] [PubMed] [Google Scholar]
  • 31.Murata S., Minami Y., Minami M., Chiba T., Tanaka K. CHIP is a chaperone-dependent E3 ligase that ubiquitylates unfolded protein. EMBO Rep. 2001;2:1133–1138. doi: 10.1093/embo-reports/kve246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Cardozo C.P., Michaud C., Ost M.C., Fliss A.E., Yang E., Patterson C., Hall S.J., Caplan A.J. C-terminal Hsp-interacting protein slows androgen receptor synthesis and reduces its rate of degradation. Arch. Biochem. Biophys. 2003;410:134–140. doi: 10.1016/S0003-9861(02)00680-X. [DOI] [PubMed] [Google Scholar]
  • 33.He B., Bai S., Hnat A.T., Kalman R.I., Minges J.T., Patterson C., Wilson E.M. An androgen receptor NH2-terminal conserved motif interacts with the COOH terminus of the Hsp70-interacting protein (CHIP) J. Biol. Chem. 2004;279:30643–30653. doi: 10.1074/jbc.M403117200. [DOI] [PubMed] [Google Scholar]
  • 34.Rechsteiner M., Rogers S.W. PEST sequences and regulation by proteolysis. Trends Biochem. Sci. 1996;21:267–271. doi: 10.1016/0968-0004(96)10031-1. [DOI] [PubMed] [Google Scholar]
  • 35.Wolf D.H., Hilt W. The proteasome: a proteolytic nanomachine of cell regulation and waste disposal. Biochim. Biophys. Acta. 2004;1695:19–31. doi: 10.1016/j.bbamcr.2004.10.007. [DOI] [PubMed] [Google Scholar]
  • 36.Lin H.K., Hu Y.C., Lee D.K., Chang C. Regulation of androgen receptor signaling by PTEN (phosphatase and tensin homolog deleted on chromosome 10) tumor suppressor through distinct mechanisms in prostate cancer cells. Mol. Endocrinol. 2004;18:2409–2423. doi: 10.1210/me.2004-0117. [DOI] [PubMed] [Google Scholar]
  • 37.Yang L., Wang L., Lin H.K., Kan P.Y., Xie S., Tsai M.Y., Wang P.H., Chen Y.T., Chang C. Interleukin-6 differentially regulates androgen receptor transactivation via PI3K-Akt, STAT3, and MAPK, three distinct signal pathways in prostate cancer cells. Biochem. Biophys. Res. Commun. 2003;305:462–469. doi: 10.1016/S0006-291X(03)00792-7. [DOI] [PubMed] [Google Scholar]
  • 38.Cronauer M.V., Nessler-Menardi C., Klocker H., Maly K., Hobisch A., Bartsch G., Culig Z. Androgen receptor protein is down-regulated by basic fibroblast growth factor in prostate cancer cells. Br. J. Cancer. 2000;82:39–45. doi: 10.1054/bjoc.1999.0874. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Lin H.K., Yeh S., Kang H.Y., Chang C. Akt suppresses androgen-induced apoptosis by phosphorylating and inhibiting androgen receptor. Proc. Natl. Acad. Sci. USA. 2001;98:7200–7205. doi: 10.1073/pnas.121173298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Hu Y.C., Yeh S., Yeh S.D., Sampson E.R., Huang J., Li P., Hsu C.L., Ting H.J., Lin H.K., Wang L., Kim E., Ni J., Chang C. Functional domain and motif analyses of androgen receptor coregulator ARA70 and its differential expression in prostate cancer. J. Biol. Chem. 2004;279:33438–33446. doi: 10.1074/jbc.M401781200. [DOI] [PubMed] [Google Scholar]
  • 41.Lin H.K., Hu Y.C., Yang L., Altuwaijri S., Chen Y.T., Kang H.Y., Chang C. Suppression versus induction of androgen receptor functions by the phosphatidylinositol 3-kinase/Akt pathway in prostate cancer LNCaP cells with different passage numbers. J. Biol. Chem. 2003;278:50902–50907. doi: 10.1074/jbc.M300676200. [DOI] [PubMed] [Google Scholar]
  • 42.Wen Y., Hu M.C., Makino K., Spohn B., Bartholomeusz G., Yan D.H., Hung M.C. HER-2/neu promotes androgen-independent survival and growth of prostate cancer cells through the Akt pathway. Cancer Res. 2000;60:6841–6845. [PubMed] [Google Scholar]
  • 43.Salas T.R., Kim J., Vakar-Lopez F., Sabichi A.L., Troncoso P., Jenster G., Kikuchi A., Chen S.Y., Shemshedini L., Suraokar M., Logothetis C.J., DiGiovanni J., Lippman S.M., Menter D.G. Glycogen synthase kinase-3 beta is involved in the phosphorylation and suppression of androgen receptor activity. J. Biol. Chem. 2004;279:19191–19200. doi: 10.1074/jbc.M309560200. [DOI] [PubMed] [Google Scholar]
  • 44.Liao X., Thrasher J.B., Holzbeierlein J., Stanley S., Li B. Glycogen synthase kinase-3beta activity is required for androgen-stimulated gene expression in prostate cancer. Endocrinology. 2004;145:2941–2949. doi: 10.1210/en.2003-1519. [DOI] [PubMed] [Google Scholar]
  • 45.Gioeli D., Black B.E., Gordon V., Spencer A., Kesler C.T., Eblen S.T., Paschal B.M., Weber M.J. Stress kinase signaling regulates androgen receptor phosphorylation, transcription, and localization. Mol. Endocrinol. 2006;20:503–515. doi: 10.1210/me.2005-0351. [DOI] [PubMed] [Google Scholar]
  • 46.Fu M., Wang C., Zhang X., Pestell R.G. Acetylation of nuclear receptors in cellular growth and apoptosis. Biochem. Pharmacol. 2004;68:1199–1208. doi: 10.1016/j.bcp.2004.05.037. [DOI] [PubMed] [Google Scholar]
  • 47.Ito A., Kawaguchi Y., Lai C.H., Kovacs J.J., Higashimoto Y., Appella E., Yao T.P. MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation. EMBO J. 2002;21:6236–6245. doi: 10.1093/emboj/cdf616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Cidlowski J.A., Cidlowski N.B. Regulation of glucocorticoid receptors by glucocorticoids in cultured HeLa S3 cells. Endocrinology. 1981;109:1975–1982. doi: 10.1210/endo-109-6-1975. [DOI] [PubMed] [Google Scholar]
  • 49.Dace A., Zhao L., Park K.S., Furuno T., Takamura N., Nakanishi M., West B.L., Hanover J.A., Cheng S. Hormone binding induces rapid proteasome-mediated degradation of thyroid hormone receptors. Proc. Natl. Acad. Sci. USA. 2000;97:8985–8990. doi: 10.1073/pnas.160257997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Zhu J., Gianni M., Kopf E., Honore N., Chelbi-Alix M., Koken M., Quignon F., Rochette-Egly C., de The H. Retinoic acid induces proteasome-dependent degradation of retinoic acid receptor alpha (RARalpha) and oncogenic RARalpha fusion proteins. Proc. Natl. Acad. Sci. USA. 1999;96:14807–14812. doi: 10.1073/pnas.96.26.14807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Lange C.A., Shen T., Horwitz K.B. Phosphorylation of human progesterone receptors at serine-294 by mitogen-activated protein kinase signals their degradation by the 26S proteasome. Proc. Natl. Acad. Sci. USA. 2000;97:1032–1037. doi: 10.1073/pnas.97.3.1032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Nawaz Z., Lonard D.M., Dennis A.P., Smith C.L., O’Malley B.W. Proteasome-dependent degradation of the human estrogen receptor. Proc. Natl. Acad. Sci. USA. 1999;96:1858–1862. doi: 10.1073/pnas.96.5.1858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Gaughan L., Logan I.R., Neal D.E., Robson C.N. Regulation of androgen receptor and histone deacatylase 1 by Mdm2-mediated ubiquitylation. Nucleic Acids Res. 2005;33:13–26. doi: 10.1093/nar/gki141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Tyagi R.K., Lavrovsky Y., Ahn S.C., Song C.S., Chatterjee B., Roy A.K. Dynamics of intracellular movement and nucleocytoplasmic recycling of the ligand-activated androgen receptor in living cells. Mol. Endocrinol. 2000;14:1162–1174. doi: 10.1210/me.14.8.1162. [DOI] [PubMed] [Google Scholar]
  • 55.Dai J.L., Burnstein K.L. Two androgen response elements in the androgen receptor coding region are required for cell-specific up-regulation of receptor messenger RNA. Mol. Endocrinol. 1996;10:1582–1594. doi: 10.1210/me.10.12.1582. [DOI] [PubMed] [Google Scholar]
  • 56.Black B.E., Vitto M.J., Gioeli D., Spencer A., Afshar N., Conaway M.R., Weber M.J., Paschal B.M. Transient, ligand-dependent arrest of the androgen receptor in subnuclear foci alters phosphorylation and coactivator interactions. Mol. Endocrinol. 2004;18:834–850. doi: 10.1210/me.2003-0145. [DOI] [PubMed] [Google Scholar]
  • 57.Kinyamu H.K., Chen J., Archer T.K. Linking the ubiquitin-proteasome pathway to chromatin remodeling/modification by nuclear receptors. J. Mol. Endocrinol. 2005;34:281–297. doi: 10.1677/jme.1.01680. [DOI] [PubMed] [Google Scholar]
  • 58.Kang Z., Jänne O.A., Palvimo J.J. Coregulator recruitment and histone modifications in transcriptional regulation by the androgen receptor. Mol. Endocrinol. 2004;18:2633–2648. doi: 10.1210/me.2004-0245. [DOI] [PubMed] [Google Scholar]
  • 59.Fu M., Wang C., Reutens A.T., Wang J., Angeletti R.H., Siconolfi-Baez L., Ogryzko V., Avantaggiati M.L., Pestell R.G. p300 and p300/cAMP response element-binding protein-associated factor acetylate the androgen receptor at sites governing hormone-dependent transactivation. J. Biol. Chem. 2000;275:20853–20860. doi: 10.1074/jbc.M000660200. [DOI] [PubMed] [Google Scholar]
  • 60.Daujat S., Bauer U.M., Shah V., Turner B., Berger S., Kouzarides T. Crosstalk between CARM1 methylation and CBP acetylation on histone H3. Curr. Biol. 2002;12:2090–2097. doi: 10.1016/S0960-9822(02)01387-8. [DOI] [PubMed] [Google Scholar]
  • 61.Marshall T.W., Link K.A., Petre-Draviam C.E., Knudsen K.E. Differential requirement of SWI/SNF for androgen receptor activity. J. Biol. Chem. 2003;278:30605–30613. doi: 10.1074/jbc.M304582200. [DOI] [PubMed] [Google Scholar]
  • 62.Wang Q., Sharma D., Ren Y., Fondell J.D. A coregulatory role for the TRAP-Mediator complex in androgen receptor-mediated gene expression. J. Biol. Chem. 2002;277:42852–42858. doi: 10.1074/jbc.M206061200. [DOI] [PubMed] [Google Scholar]
  • 63.Huang Z.Q., Li J., Sachs L.M., Cole P.A., Wong J. A role for cofactor-cofactor and cofactor-histone interactions in targeting p300, SWI/SNF and Mediator for transcription. EMBO J. 2003;22:2146–2155. doi: 10.1093/emboj/cdg219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Lee D.K., Chang C. Molecular communication between androgen receptor and general transcription machinery. J. Steroid Biochem. Mol. Biol. 2003;84:41–49. doi: 10.1016/S0960-0760(03)00005-0. [DOI] [PubMed] [Google Scholar]
  • 65.Svejstrup J.Q. The RNA polymerase II transcription cycle: cycling through chromatin. Biochim. Biophys. Acta. 2004;1677:64–73. doi: 10.1016/j.bbaexp.2003.10.012. [DOI] [PubMed] [Google Scholar]
  • 66.Kang Z., Pirskanen A., Jänne O.A., Palvimo J.J. Involvement of proteasome in the dynamic assembley of the androgen receptor transcription complex. J. Biol. Chem. 2002;277:48366–48371. doi: 10.1074/jbc.M209074200. [DOI] [PubMed] [Google Scholar]
  • 67.Hager G.L., Nagaich A.K., Johnson T.A., Walker D.A., John S. Dynamics of nuclear receptor movement and transcription. Biochim. Biophys. Acta. 2004;1677:46–51. doi: 10.1016/j.bbaexp.2003.09.016. [DOI] [PubMed] [Google Scholar]
  • 68.Dennis A.P., O’Malley B.W. Rush hour at the promoter: how the ubiquitin-proteasome pathway polices the traffic flow of nuclear receptor-dependent transcription. J. Steroid Biochem. Mol. Biol. 2005;93:139–151. doi: 10.1016/j.jsbmb.2004.12.015. [DOI] [PubMed] [Google Scholar]
  • 69.Lin H.K., Altuwaijri S., Lin W.J., Kan P.Y., Collins L.L., Chang C. Proteasome activity is required for androgen receptor transcriptional activity via regulation of androgen receptor nuclear translocation and interaction with coregulators in prostate cancer cells. J. Biol. Chem. 2002;277:36570–36576. doi: 10.1074/jbc.M204751200. [DOI] [PubMed] [Google Scholar]
  • 70.Makino Y., Yoshida T., Yogosawa S., Tanaka K., Muramatsu M., Tamura T. Multiple mammalian proteasomal ATPases, but not proteasome itself, are associated with TATA-binding protein and a novel transcriptional activator, TIP 120. Genes Cells. 1999;4:529–539. doi: 10.1046/j.1365-2443.1999.00277.x. [DOI] [PubMed] [Google Scholar]
  • 71.Gonzalez F., Delahodde A., Kodadek T., Johnston S.A. Recruitment of a 19S proteasome subcomplex to an activated promoter. Science. 2002;296:548–550. doi: 10.1126/science.1069490. [DOI] [PubMed] [Google Scholar]
  • 72.Ferdous A., Kodadek T., Johnston S.A. A nonproteolytic function of the 19S regulatory subunit of the 26S proteasome is required for efficient activated transcription by human RNA polymerase II. Biochemistry. 2002;41:12798–12805. doi: 10.1021/bi020425t. [DOI] [PubMed] [Google Scholar]
  • 73.vom Baur E., Zechel C., Heery D., Heine M.J., Garnier J.M., Vivat V., Le Douarin B., Gronemeyer H., Chambon P., Losson R. Differential ligand-dependent interactions between the AF-2 activating domain of nuclear receptors and the putative transcriptional intermediary factors mSUG1 and TIF1. EMBO J. 1996;15:110–124. [PMC free article] [PubMed] [Google Scholar]
  • 74.Ikezoe T., Yang Y., Saito T., Koeffler H.P., Taguchi H. Proteasome inhibitor PS-341 down-regulates prostate-specific antigen (PSA) and induces growth arrest and apoptosis of androgen-dependent human prostate cancer LNCaP cells. Cancer Sci. 2004;95:271–275. doi: 10.1111/j.1349-7006.2004.tb02215.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Sun L., Chen Z.J. The novel functions of ubiquitination in signaling. Curr. Opin. Cell Biol. 2004;16:119–126. doi: 10.1016/j.ceb.2004.02.005. [DOI] [PubMed] [Google Scholar]
  • 76.Salghetti S.E., Caudy A.A., Chenoweth J.G., Tansey W.P. Regulation of transcriptional activation domain function by ubiquitin. Science. 2001;293:1651–1653. doi: 10.1126/science.1062079. [DOI] [PubMed] [Google Scholar]
  • 77.Burgdorf S., Leister P., Scheidtmann K.H. TSG101 interacts with apoptosis-antagonizing transcription factor and enhances androgen receptor-mediated transcription by promoting its monoubiquitination. J. Biol. Chem. 2004;279:17524–17534. doi: 10.1074/jbc.M313703200. [DOI] [PubMed] [Google Scholar]
  • 78.Conaway R.C., Brower C.S., Conaway J.W. Emerging roles of ubiquitin in transcriptional regulation. Science. 2002;296:1254–1258. doi: 10.1126/science.1067466. [DOI] [PubMed] [Google Scholar]
  • 79.Pham A.D., Sauer F. Ubiquitin-activating/conjugating activity of TAFII250, a mediator of activation of gene expression in Drosophila. Science. 2000;289:2357–2360. doi: 10.1126/science.289.5488.2357. [DOI] [PubMed] [Google Scholar]
  • 80.Grossman S.R., Deato M.E., Brgnon C., Chan H.M., Kung A.L., Tagami H., Nakatani Y., Livingston D.M. Polyubiquitination of p53 by a ubiquitin ligase activity of p300. Science. 2003;300:342–344. doi: 10.1126/science.1080386. [DOI] [PubMed] [Google Scholar]
  • 81.Ismaili N., Blind R., Garabedian M.J. Stabilisation of the unliganded glucocorticoid receptor by TSG101. J. Biol. Chem. 2005;280:11120–11126. doi: 10.1074/jbc.M500059200. [DOI] [PubMed] [Google Scholar]
  • 82.Tanner T., Claessens F., Haelens A. The hinge region of the androgen receptor plays a role in proteasome-mediated transcriptional activation. Ann. NY Acad. Sci. 2004;1030:587–592. doi: 10.1196/annals.1329.068. [DOI] [PubMed] [Google Scholar]
  • 83.Thomas M., Dadgar N., Aphale A., Harrell J.M., Kunkel R., Pratt W.B., Lieberman A.P. Androgen receptor acetylation site mutations cause trafficking defects, misfolding and aggregation similar to expanded glutamine tracts. J. Biol. Chem. 2004;279:8389–8395. doi: 10.1074/jbc.M311761200. [DOI] [PubMed] [Google Scholar]
  • 84.Zhou Z.X., Kemppainen J.A., Wilson E.M. Identification of three proline-directed phosphorylation sites in the human androgen receptor. Mol. Endocrinol. 1995;9:605–615. doi: 10.1210/me.9.5.605. [DOI] [PubMed] [Google Scholar]
  • 85.Wong H.Y., Burghoorn J.A., Van Leeuwen M., De Ruiter P.E., Schippers E., Blok L.J., Li K.W., Dekker H.L., De Jong L., Trapman J., Grootegoed J.A., Brinkmann A.O. Phosphorylation of androgen receptor isoforms. Biochem. J. 2004;383:267–276. doi: 10.1042/BJ20040683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.Gioeli D., Ficarro S.B., Kwiek J.J., Aaronson D., Hancock M., Catling A.D., White F.M., Christian R.E., Settlage R.E., Shabanowitz J., Hunt D.F., Weber M.J. Androgen receptor phosphorylation. Regulation and identification of the phosphorylation sites. J. Biol. Chem. 2002;277:29304–29314. doi: 10.1074/jbc.M204131200. [DOI] [PubMed] [Google Scholar]
  • 87.Perissi V., Aggarwal A., Glass C.K., Rose D.W., Rosenfeld M.G. A corepressor/coactivator exchange complex required for transcriptional activation by nuclear receptors and other regulated transcription factors. Cell. 2004;116:511–526. doi: 10.1016/S0092-8674(04)00133-3. [DOI] [PubMed] [Google Scholar]
  • 88.Zhang J., Guenther M.G., Carthew R.W., Lazar M.A. Proteasomal regulation of nuclear receptor corepressor-mediated repression. Genes Dev. 1998;12:1775–1780. doi: 10.1101/gad.12.12.1775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89.Gao X., Mohsin S.K., Gatalica Z., Fu G., Sharma P., Nawaz Z. Decreased expression of E6-associated protein in breast and prostate carcinomas. Endocrinology. 2005;146:1707–1712. doi: 10.1210/en.2004-1198. [DOI] [PubMed] [Google Scholar]
  • 90.Jänne O.A., Moilanen A.M., Poukka H., Rouleau N., Karvonen U., Kotaja N., Häkli M., Palvimo J.J. Androgen-receptor-interacting nuclear proteins. Biochem. Soc. Trans. 2000;28:401–405. [PubMed] [Google Scholar]
  • 91.Stenoien D.L., Cummings C.J., Adams H.P., Mancini M.G., Patel K., DeMartino G.N., Marcelli M., Weigel N.L., Mancini M.A. Polyglutamine-expanded androgen receptors form aggregates that sequester heat shock proteins, proteasome components and SRC-1, and are suppressed by the HDJ-2 chaperone. Hum. Mol. Genet. 1999;8:731–741. doi: 10.1093/hmg/8.5.731. [DOI] [PubMed] [Google Scholar]
  • 92.Fan M., Bigsby R.M., Nephew K.P. The NEDD8 pathway is required for proteasome-mediated degradation of human estrogen receptor (ER)-alpha and essential for the antiproliferative activity of ICI 182,780 in ERalpha-positive breast cancer cells. Mol. Endocrinol. 2003;17:356–365. doi: 10.1210/me.2002-0323. [DOI] [PubMed] [Google Scholar]
  • 93.Abreu-Martin M.T., Chari A., Palladino A.A., Craft N.A., Sawyers C.L. Mitogen-activated protein kinase kinase kinase 1 activates androgen receptor-dependent transcription and apoptosis in prostate cancer. Mol. Cell. Biol. 1999;19:5143–5154. doi: 10.1128/mcb.19.7.5143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94.Yeh S., Lin H.K., Kang H.Y., Thin T.H., Lin M.F., Chang C. From HER2/Neu signal cascade to androgen receptor and its coactivators: a novel pathway by induction of androgen target genes through MAP kinase in prostate cancer cells. Proc. Natl. Acad. Sci. USA. 1999;96:5458–5463. doi: 10.1073/pnas.96.10.5458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Darne C., Veyssiere G., Jean C. Phorbol ester causes ligand-independent activation of the androgen receptor. Eur. J. Biochem. 1998;256:541–549. doi: 10.1046/j.1432-1327.1998.2560541.x. [DOI] [PubMed] [Google Scholar]
  • 96.Nazareth L.V., Weigel N.L. Activation of the human androgen receptor through a protein kinase A signaling pathway. J. Biol. Chem. 1996;271:19900–19907. doi: 10.1074/jbc.271.33.19900. [DOI] [PubMed] [Google Scholar]
  • 97.Veldscholte J., Ris-Stalpers C., Kuiper G.G., Jenster G., Berrevoets C., Claassen E., van Rooij H.C., Trapman J., Brinkmann A.O., Mulder E. A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and response to anti-androgens. Biochem. Biophys. Res. Commun. 1990;173:534–540. doi: 10.1016/S0006-291X(05)80067-1. [DOI] [PubMed] [Google Scholar]
  • 98.Koivisto P., Visakorpi T., Kallioniemi O.P. Androgen receptor gene amplification: a novel molecular mechanism for endocrine therapy resistance in human prostate cancer. Scand. J. Clin. Lab. Invest. Suppl. 1996;226:57–63. doi: 10.3109/00365519609168299. [DOI] [PubMed] [Google Scholar]
  • 99.Culig Z., Hobisch A., Cronauer M.V., Cato A.C.B., Hittmair A., Radmayr C., Eberle J., Bartsch G., Klocker H. Mutant androgen receptor detected in an advanced-stage prostatic carcinoma is activated by adrenal androgens and progesterone. Mol. Endocrinol. 1993;7:1541–1550. doi: 10.1210/me.7.12.1541. [DOI] [PubMed] [Google Scholar]
  • 100.Veldscholte J., Voorhorst-Ogink M.M., Bolt-de Vries J., van Rooij H.C., Trapman J., Mulder E. Unusual specificity of the androgen receptor in the human prostate tumor cell line LNCaP: high affinity for progestagenic and estrogenic steroids. Biochim. Biophys. Acta. 1990;1052:187–194. doi: 10.1016/0167-4889(90)90075-O. [DOI] [PubMed] [Google Scholar]
  • 101.Cha T.L., Qiu L., Chen C.T., Wen Y., Hung M.C. Emodin down-regulates androgen receptor and inhibits prostate cancer cell growth. Cancer Res. 2005;65:2287–2295. doi: 10.1158/0008-5472.CAN-04-3250. [DOI] [PubMed] [Google Scholar]
  • 102.Pajonk F., van Ophoven A., McBride W.H. Hyperthermia-induced proteasome inhibition and loss of androgen receptor expression in human prostate cancer cells. Cancer Res. 2005;65:4836–4843. doi: 10.1158/0008-5472.CAN-03-2749. [DOI] [PubMed] [Google Scholar]
  • 103.Schneekloth J.S., Fonseca F.N., Koldobskiy M., Mandal A., Deshaies R., Sakamoto K., Crews C.M. Chemical genetic control of protein levels: selective in vivo targeted degradation. J. Am. Chem. Soc. 2004;126:3748–3754. doi: 10.1021/ja039025z. [DOI] [PubMed] [Google Scholar]
  • 104.Prescott J., Coetzee G.A. Molecular chaperones throughout the life cycle of androgen receptor. Cancer Lett. 2006;231:12–19. doi: 10.1016/j.canlet.2004.12.037. [DOI] [PubMed] [Google Scholar]
  • 105.Vanaja D.K., Mitchell S.H., Toft D.O., Young C.Y.F. Effect of geldanamycin on androgen receptor function and stability. Cell Stress Chaperones. 2002;7:55–64. doi: 10.1379/1466-1268(2002)007<0055:EOGOAR>2.0.CO;2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106.Kuduk S.D., Harris C.R., Zheng F.F., Sepp-Lorenzino L., Ouerfelli Q., Rosen N., Danishefsky S.J. Synthesis and evaluation of geldanamycin-testosterone hybrids. Bioorg. Med. Chem. Lett. 2000;10:1303–1306. doi: 10.1016/S0960-894X(00)00208-0. [DOI] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES