Abstract
Lovastatin, an inhibitor of cellular cholesterol synthesis, has an apparent anti-cancer property, but the detailed mechanisms of its anti-cancer effects remain poorly understood. We investigated the molecular mechanism of Lovastatin anti-tumor function through the study of its effect on membrane ion flow, gap junctional intercellular communication (GJIC), and the pathways of related signals in MCF-7 mammary cancer cells. After treatment for 24–72 h with 4, 8 or 16 μmol/L Lovastatin, cellular proliferation was examined via the MTT assay, and changes in membrane potential and cellular [Ca2+]i were monitored using confocal laser microscopy. In addition, the expression of plasma membrane calcium ATPase isoform 1 (PMCA1) mRNA was analyzed via RT-PCR, the GJIC function was examined using the scrape-loading dye transfer (SLDT) technique, and MAPK phosphorylation levels were tested with the kinase activity assay. The results showed that Lovastatin treatment significantly inhibited the growth of MCF-7 breast cancer cells. It also increased the negative value of the membrane potential, leading to the hyperpolarization of cells. Moreover, Lovastatin treatment continuously enhanced [Ca2+]i, although the levels of PMCA1 mRNA were unchanged. GJIC was also upregulated in MCF-7 cells, with transfer of LY Fluorescence reaching 4 to 5 rows of cells from the scraped line after treatment with 16 μmol/L Lovastatin for 72 h. Finally, downregulation of ERK1 and p38MAPK phosphorylation were found in Lovastatin-treated MCF-7 cells. It could be deduced that Lovastatin can induce changes in cellular hyperpolarization and intracellular Ca2+ distributions, and increase GJIC function. These effects may result in changes in the downstream signal cascade, inhibiting the growth of MCF-7 cells.
Key words: Lovastatin, Human breast cancer cells, Cellular membrane ion transfer, Gap junctional intercellular communication (GJIC), MAPK activity
Full Text
The Full Text of this article is available as a PDF (623.7 KB).
Abbreviations used
- [Ca2+]i
cytosolic free Ca2+ concentration
- GI
growth inhibition
- GJIC
gap junctional intercellular communication
- HMG-CoA
3-hydroxy-3-methylglutarylcoenzyme A
- LOV
lovastatin
- MVA
mevalonic acid
- PMCA1
plasma membrane calcium ATPase isoform 1
References
- 1.Lange Y., Duan H., Mazzone T. Cholesterol homeostasis is modulated by amphiphiles at transcriptional and post-transcriptional loci. Lipid Res. 1996;37:534–539. [PubMed] [Google Scholar]
- 2.Buttke T.M., Van Cleave S. Adaptation of a cholesterol deficient human T cell line to growth with lanosterol. Biochem. Biophys. Res. Commun. 1994;200:206–212. doi: 10.1006/bbrc.1994.1435. [DOI] [PubMed] [Google Scholar]
- 3.Shellman Y.G., Ribble D., Miller L., Gendall J., Vanbuskirk K., Kelly D., Norris D.A., Dellavalle R.P. Lovastatin-induced apoptosis in human melanoma cell lines. Melanoma Res. 2005;15:83–89. doi: 10.1097/00008390-200504000-00001. [DOI] [PubMed] [Google Scholar]
- 4.Dimitrowlakos J., Ye L.Y., Benzaquen M., Moore M.J., Kamel-Reid S., Freedman M.H., Yeger H., Penn L.Z. Differentiation sensitivity of various pediatric cancers and squamous cell carcinomas to Lovastatin-induced apoptosis: therapeutic implications. Clin. Cancer Res. 2001;7:158–167. [PubMed] [Google Scholar]
- 5.Ruch R.J., Madhukar B.V., Trosko J.E., Klaunig J.E. Reversal of rasinduced inhibition of gap-junctional intercellular communication, transformation, and tumorigenesis by lovastatin. Mol. Carcinog. 1993;7:50–59. doi: 10.1002/mc.2940070109. [DOI] [PubMed] [Google Scholar]
- 6.Hladky S.B., Rink T.J. Potential difference and the distribution of ions across the human red blood cell membrane; a study of the mechanism by which the fluorescent cation, diS-C3-(5) reports membrane potential. J. Physiol. 1976;263:287–319. doi: 10.1113/jphysiol.1976.sp011632. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Plasek J., Hronda V. Assessment of membrane potential changes using the carbocyanine dye, diS-C3-(5): synchronous excitation spectroscopy studies. Eur. Biophys. J. 1991;19:183–188. doi: 10.1007/BF00196344. [DOI] [PubMed] [Google Scholar]
- 8.Suzuki H., Wang Z.Y., Yamakoshi M., Kobayashi M., Nozawa T. Probing the transmembrane potential of bacterial cells by voltage-sensitive dyes. Anal. Sci. 2003;19:1239–1242. doi: 10.2116/analsci.19.1239. [DOI] [PubMed] [Google Scholar]
- 9.Kao J.P., Harootunian A.T., Tsien R.Y. Photochemically generated cytosolic calcium pulses and their detection by Fluo-3. J. Biol. Chem. 1989;264:8179–8184. [PubMed] [Google Scholar]
- 10.Roberts-Thomson S.J., Holman N.A., May F.J., Lee W.J., Monteith G.R. Development of a real-time RT-PCR assay for plasma membrane calcium ATPase isoform 1 (PMCA1) mRNA levels in a human breast epithelial cell line. J. Pharmacol. Toxicol. Methods. 2000;44:513–517. doi: 10.1016/S1056-8719(01)00112-5. [DOI] [PubMed] [Google Scholar]
- 11.el-Fouly M.H., Trosko J.E., Chang C.C. Scrape-loading and dye transfer. A rapid and simple technique to study gap junctional intercellular communication. Exp. Cell. Res. 1987;168:422–430. doi: 10.1016/0014-4827(87)90014-0. [DOI] [PubMed] [Google Scholar]
- 12.Zhuang L., Kim J., Adam R.M., Solomon K.R., Freeman M.R. Cholesterol targeting alters lipid raft composition and cell survival in prostate cancer cells and xenografts. J. Clin. Invest. 2005;115:959–968. doi: 10.1172/JCI200519935. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Waczulikova I., Sikurova L., Bryszewska M.R., Kawiecka K., Carsky J., Ulicna O. Impaired erythrocyte transmembrane potential in diabetes mellitus and its possible improvement by resorcylidene aminoguanidine. Bioelectrochemistry. 2000;52:251–256. doi: 10.1016/S0302-4598(00)00107-0. [DOI] [PubMed] [Google Scholar]
- 14.Toyomizu M., Okamoto K., Akiba Y., Nakatsu T., Konishi T. Anacardic acid-mediated changes in membrane potential and pH gradient across liposomal membrane. Biochem. Biophys. Acta. 2002;1558:54–62. doi: 10.1016/s0005-2736(01)00422-9. [DOI] [PubMed] [Google Scholar]
- 15.de Poorter L.M., Keltjens J.T. Convenient fluorescence-based methods to measure membrane potential and intracellular pH in the Archaeo Methanobacterium thermoautotrophicum. J. Microbiol. Methods. 2001;47:233–241. doi: 10.1016/S0167-7012(01)00312-8. [DOI] [PubMed] [Google Scholar]
- 16.Schiffenbauer Y.S., Trubniykov E., Zacharia B.T., Gerbat S., Rehavi Z., Berke G., Chaitchik S. Tumor sensitivity to anti-cancer drugs predicted by changes in fluorescence intensity and polarization in vitro. Anticancer Res. 2002;22:2663–2669. [PubMed] [Google Scholar]
- 17.Fouty B.W., Rodman D.M. Mevastatin can cause G1 arrest and induce apoptosis in pulmonary artery smooth muscle cells through a p27Kip1-independent pathway. Circ. Res. 2003;92:501–509. doi: 10.1161/01.RES.0000061180.03813.0F. [DOI] [PubMed] [Google Scholar]
- 18.Germano D., Pacilio C., Cancemi M., Cicatiello L., Altucci L., Petrizzi V.B., Sperandio C., Salzano S., Michalides R.J., Taya Y., Bresciani F., Weisz A. Inhibition of human breast cancer cell growth by blockade of the mevalonate-protein prenylation pathway is not prevented by overexpression of cyclin D1. Breast Cancer Res. Treat. 2001;67:23–33. doi: 10.1023/A:1010675310188. [DOI] [PubMed] [Google Scholar]
- 19.Zhang T.C., Cao E.H., Li J.F., Ma W., Qin J.F. Induction of apoptosis and inhibition of human gastric cancer MGC-803 cell growth by arsenic trioxide. Eur. J. Cancer. 1999;35:1258–1263. doi: 10.1016/S0959-8049(99)00106-9. [DOI] [PubMed] [Google Scholar]
- 20.Florio T., Thellung S., Arena S., Corsaro A., Spaziante R., Gussoni G., Acuto G., Giusti M., Giordano G., Schettini G. Somatostatin and its analog lanreotide inhibit the proliferation of dispersed human nonfunctioning pituitary adenoma cells in vitro. Eur. J. Endocrinol. 1999;141:396–408. doi: 10.1530/eje.0.1410396. [DOI] [PubMed] [Google Scholar]
- 21.Miyake H., Hara I., Yamanaka K., Arakawa S., Kamidono S. Calcium ionophore, ionomycin inhibits growth of human bladder cancer cells both in vitro and in vivo with alteration of Bcl-2 and Bax expression levels. J. Urol. 1999;162:916–921. doi: 10.1097/00005392-199909010-00090. [DOI] [PubMed] [Google Scholar]
- 22.Popescu B.O., Cedazo-Minguez A., Popescu L.M., Winblad B., Cowburn R.F., Ankarcrona M. Caspase cleavage of exon 9 deleted presenilin-1 is an early event in apoptosis induced by calcium ionophore A 23187 in SH-SY5Y neuroblastoma cells. J. Neurosci. Res. 2001;66:122–134. doi: 10.1002/jnr.1204. [DOI] [PubMed] [Google Scholar]
- 23.Cronier L., Frendo J.L., Defamie N., Pidoux G., Bertin G., Guibourdenche J., Pointis G., Malassine A. Requirement of gap junctional intercellular communication for human villous trophoblast differentiation. Biol. Reprod. 2003;69:1472–1480. doi: 10.1095/biolreprod.103.016360. [DOI] [PubMed] [Google Scholar]
- 24.Evans W.H., Martin P.E. Gap junctions: Structure and Function. Mol. Membr. Biol. 2002;19:121–136. doi: 10.1080/09687680210139839. [DOI] [PubMed] [Google Scholar]
- 25.Alexander D.B., Goldberg G.S. Transfer of biologically important molecules between cells through gap junction channels. Curr. Med. Chem. 2003;10:2045–2058. doi: 10.2174/0929867033456927. [DOI] [PubMed] [Google Scholar]
- 26.Carruba G., Webber M.M., Quader S.T., Amoroso M., Cocciadiferro L., Saladino F., Trosko J.E., Castagnetta L.A. Regulation of cell-to-cell communication in non-tumorigenic and malignant human prostate epithelial cells. Prostate. 2002;50:73–82. doi: 10.1002/pros.10034. [DOI] [PubMed] [Google Scholar]
- 27.Saito T., Tanaka R., Wataba K., Kudo R., Yamasaki H. Overexpression of estrogen receptor-alpha gene suppresses gap junctional intercellular communication in endometrial carcinoma cells. Oncogene. 2004;23:1109–1116. doi: 10.1038/sj.onc.1207215. [DOI] [PubMed] [Google Scholar]
- 28.Trosko J.E., Ruch R.J. Cell-cell communication in carcinogenesis. Front Biosci. 1998;3:D208–236. doi: 10.2741/a275. [DOI] [PubMed] [Google Scholar]
- 29.Trosko J.E., Ruch R.J. Gap junctions as targets for cancer chemoprevention and chemotherapy. Curr. Drug Targets. 2002;3:465–482. doi: 10.2174/1389450023347371. [DOI] [PubMed] [Google Scholar]
- 30.Van Golen K.L., Bao L.W., Pan Q., Miller F.R., Wu Z.F., Merajver S.D. Mitogen activated protein kinase pathway is involved in RhoC GTPase induced motility, invasion and angiogenesis in inflammatory breast cancer. Clin. Exp. Metastasis. 2002;19:301–311. doi: 10.1023/A:1015518114931. [DOI] [PubMed] [Google Scholar]
- 31.Senokuchi T., Matsumura T., Sakai M., Yano M., Taguchi T., Matsuo T., Sonoda K., Kukidome D., Imoto K., Nishikawa T., Kim-Mitsuyama S., Takuwa Y., Araki E. Statins suppress oxidized low density lipoprotein-induced macrophage proliferation by inactivation of the small G protein-p38 MAPK pathway. J. Biol. Chem. 2005;280:6627–6633. doi: 10.1074/jbc.M412531200. [DOI] [PubMed] [Google Scholar]
- 32.Wu J., Wong W.W., Khosravi F., Minden M.D., Penn L.Z. Blocking the Raf/MEK/ERK pathway sensitizes actue myelogenous leukemia cells to lovastatin-induced apoptosis. Cancer Res. 2004;64:6461–6468. doi: 10.1158/0008-5472.CAN-04-0866. [DOI] [PubMed] [Google Scholar]
- 33.Holstein S.A., Hohl R.J. Interaction of cytosine arabinoside and lovastatin in human leukemia cells. Leukemia Res. 2001;25:651–660. doi: 10.1016/S0145-2126(00)00162-4. [DOI] [PubMed] [Google Scholar]
- 34.Johnson M.D., Woodard A., Okediji E.J., Toms S.A., Allen G.S. Lovastatin is a potent inhibitor of meningioma cell proliferation: evidence for inhibition of a mitogen associated protein kinase. J. Neurooncol. 2002;56:133–142. doi: 10.1023/A:1014588214966. [DOI] [PubMed] [Google Scholar]
- 35.Takata R., Fukasawa S., Hara T., Nakajima H., Yamashina A., Yanase N., Mizuguchi J. Cerivastatin-induced apoptosis of human aortic smooth muscle cells through partial inhibition of basal activation of extracellular signal-regulated kinases. Cardiovasc. Pathol. 2004;13:41–48. doi: 10.1016/S1054-8807(03)00104-2. [DOI] [PubMed] [Google Scholar]