Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2011 Nov 21;17(1):11–20. doi: 10.2478/s11658-011-0032-x

Roles of the NFκB and glutathione pathways in mature human erythrocytes

Mehrdad Ghashghaeinia 1,3, Mahmoud Toulany 2, Mohammad Saki 2, H Peter Rodemann 2, Ulrich Mrowietz 3, Florian Lang 1,, Thomas Wieder 4
PMCID: PMC6275705  PMID: 22105338

Abstract

Anucleated erythrocytes were long considered as oxygen-transporting cells with limited regulatory functions. Components of different nuclear signaling pathways have not been investigated in those cells, yet. Surprisingly, we repeatedly found significant amounts of transcription factors in purified erythrocyte preparations, i.e. nuclear factor κB (NFκB), and major components of the canonical NFκB signaling pathway. To investigate the functional role of NFκB signaling, the effects of the preclinical compounds Bay 11-7082 and parthenolide on the survival of highly purified erythrocytes were investigated. Interestingly, both inhibitors of the NFκB pathway triggered erythrocyte programmed cell death as demonstrated by enhanced phospholipid scrambling (phosphatidylserine exposure) and cell shrinkage. Anucleated erythrocytes are an ideal cellular model allowing the study of nongenomic mechanisms contributing to suicidal cell death. As NFκB inhibitors might also interfere with the anti-oxidative defense systems of the cell, we measured the levels of reduced glutathione (GSH) after challenge with the inhibitors. Indeed, incubation of erythrocytes with Bay 11-7082 clearly decreased erythrocyte GSH levels. In conclusion, the pharmacological inhibitors of the NFκB pathway Bay 11-7082 and parthenolide interfere with the survival of erythrocytes involving mechanisms other than disruption of NFκB-dependent gene expression. Besides affecting erythrocyte survival, NFκB inhibition and induction of erythrocyte phosphatidylserine exposure may influence blood clotting. Future studies will be aimed at discriminating between NFκB-dependent and NFκB-independent GSH-mediated effects of Bay 11-7082 and parthenolide on erythrocyte death.

Key words: Eryptosis, Nuclear factor kappa B, NFκB, IKK-α, IκB-α, Bay 11-7082, Parthenolide

Full Text

The Full Text of this article is available as a PDF (639.6 KB).

Abbreviations used

Ca2+

calcium

ERK2

extracellular signal-regulated kinase 2

GPIIb/IIIa

glycoprotein IIb/IIIa

GSH

reduced glutathione

ICAM-1

inter-cellular adhesion molecule

IFN-γ

interferon-γ

IκB-α

inhibitor of kappaB

IKK-α

IκB kinase-α

IL-6

interleukin-6

IL-8

interleukin-8

JNK1

c-Jun N-terminal kinase 1

NFκB

nuclear factor κB

PS

phosphatidylserine

R

putative phosphatidylserine receptor

Footnotes

Paper authored by participants of the international conference: 18th Meeting, European Association for Red Cell Research, Wrocław — Piechowice, Poland, May 12–15th, 2011. Publication cost was covered by the organizers of this meeting.

References

  • 1.Sen R., Baltimore D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell. 1986;46:705–716. doi: 10.1016/0092-8674(86)90346-6. [DOI] [PubMed] [Google Scholar]
  • 2.Ghosh S., Karin M. Missing pieces in the NF-kappaB puzzle. Cell. 2002;109(Suppl):S81–S96. doi: 10.1016/S0092-8674(02)00703-1. [DOI] [PubMed] [Google Scholar]
  • 3.Hayden M.S., Ghosh S. Signaling to NF-kappaB. Genes Dev. 2004;18:2195–2224. doi: 10.1101/gad.1228704. [DOI] [PubMed] [Google Scholar]
  • 4.Hayden M.S., Ghosh S. NF-kappaB in immunobiology. Cell. Res. 2011;21:223–244. doi: 10.1038/cr.2011.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Sun S.C. Non-canonical NF-kappaB signaling pathway. Cell. Res. 2011;21:71–85. doi: 10.1038/cr.2010.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Ghashghaeinia M., Toulany M., Saki M., Bobbala D., Fehrenbacher B., Rupec R., Rodemann H.P., Ghoreschi K., Rocken M., Schaller M., Lang F., Wieder T. The NFkB pathway inhibitors Bay 11-7082 and parthenolide induce programmed cell death in anucleated Erythrocytes. Cell. Physiol. Biochem. 2011;27:45–54. doi: 10.1159/000325204. [DOI] [PubMed] [Google Scholar]
  • 7.Neelam S., Kakhniashvili D.G., Wilkens S., Levene S.D., Goodman S.R. Functional 20S proteasomes in mature human red blood cells. Exp. Biol. Med. (Maywood.) 2011;236:580–591. doi: 10.1258/ebm.2011.010394. [DOI] [PubMed] [Google Scholar]
  • 8.Gilmore T.D., Herscovitch M. Inhibitors of NF-kappaB signaling: 785 and counting. Oncogene. 2006;25:6887–6899. doi: 10.1038/sj.onc.1209982. [DOI] [PubMed] [Google Scholar]
  • 9.Pierce J.W., Schoenleber R., Jesmok G., Best J., Moore S.A., Collins T., Gerritsen M.E. Novel inhibitors of cytokine-induced IkappaBalpha phosphorylation and endothelial cell adhesion molecule expression show anti-inflammatory effects in vivo. J. Biol. Chem. 1997;272:21096–21103. doi: 10.1074/jbc.272.34.21096. [DOI] [PubMed] [Google Scholar]
  • 10.Kwok B.H., Koh B., Ndubuisi M.I., Elofsson M., Crews C.M. The anti-inflammatory natural product parthenolide from the medicinal herb Feverfew directly binds to and inhibits IkappaB kinase. Chem. Biol. 2001;8:759–766. doi: 10.1016/S1074-5521(01)00049-7. [DOI] [PubMed] [Google Scholar]
  • 11.Garcia-Pineres A.J., Castro V., Mora G., Schmid t. T.J., Strunck E., Pahl H.L., Merfort I. Cysteine 38 in p65/NF-kappaB plays a crucial role in DNA binding inhibition by sesquiterpene lactones. J. Biol. Chem. 2001;276:39713–39720. doi: 10.1074/jbc.M101985200. [DOI] [PubMed] [Google Scholar]
  • 12.Garcia-Pineres A.J., Lindenmeyer M.T., Merfort I. Role of cysteine residues of p65/NF-kappaB on the inhibition by the sesquiterpene lactone parthenolide and N-ethyl maleimide, and on its transactivating potential. Life Sci. 2004;75:841–856. doi: 10.1016/j.lfs.2004.01.024. [DOI] [PubMed] [Google Scholar]
  • 13.Wagner S., Hofmann A., Siedle B., Terfloth L., Merfort I., Gasteiger J. Development of a structural model for NF-kappaB inhibition of sesquiterpene lactones using self-organizing neural networks. J. Med. Chem. 2006;49:2241–2252. doi: 10.1021/jm051125n. [DOI] [PubMed] [Google Scholar]
  • 14.Foller M., Bobbala D., Koka S., Huber S.M., Gulbins E., Lang F. Suicide for survival—death of infected erythrocytes as a host mechanism to survive malaria. Cell. Physiol. Biochem. 2009;24:133–140. doi: 10.1159/000233238. [DOI] [PubMed] [Google Scholar]
  • 15.Lang F., Lang K.S., Lang P.A., Huber S.M., Wieder T. Mechanisms and significance of eryptosis. Antioxid. Redox. Signal. 2006;8:1183–1192. doi: 10.1089/ars.2006.8.1183. [DOI] [PubMed] [Google Scholar]
  • 16.Lang F., Gulbins E., Lang P.A., Zappulla D., Foller M. Ceramide in suicidal death of erythrocytes. Cell. Physiol. Biochem. 2010;26:21–28. doi: 10.1159/000315102. [DOI] [PubMed] [Google Scholar]
  • 17.Koprowska K., Czyz M. Molecular mechanisms of parthenolide’s action: Old drug with a new face. Postepy Hig. Med. Dosw. 2010;64:100–114. [PubMed] [Google Scholar]
  • 18.Wen J., You K.R., Lee S.Y., Song C.H., Kim D.G. Oxidative stressmediated apoptosis. The anticancer effect of the sesquiterpene lactone parthenolide. J. Biol. Chem. 2002;277:38954–38964. doi: 10.1074/jbc.M203842200. [DOI] [PubMed] [Google Scholar]
  • 19.Zhang S., Ong C.N., Shen H.M. Critical roles of intracellular thiols and calcium in parthenolide-induced apoptosis in human colorectal cancer cells. Cancer Lett. 2004;208:143–153. doi: 10.1016/j.canlet.2003.11.028. [DOI] [PubMed] [Google Scholar]
  • 20.Pasparakis M., Luedde T., Schmidt-Supprian M. Dissection of the NF-kappaB signalling cascade in transgenic and knockout mice. Cell Death Differ. 2006;13:861–872. doi: 10.1038/sj.cdd.4401870. [DOI] [PubMed] [Google Scholar]
  • 21.Snapper C.M., Zelazowski P., Rosas F.R., Kehry M.R., Tian M., Baltimore D., Sha W.C. B cells from p50/NF-kappa B knockout mice have selective defects in proliferation, differentiation, germ-line CH transcription, and Ig class switching. J. Immunol. 1996;156:183–191. [PubMed] [Google Scholar]
  • 22.Spinelli S.L., Casey A.E., Pollock S.J., Gertz J.M., McMillan D.H., Narasipura S.D., Mody N.A., King M.R., Maggirwar S.B., Francis C.W., Taubman M.B., Blumberg N., Phipps R.P. Platelets and megakaryocytes contain functional nuclear factor-kappaB. Arterioscler. Thromb. Vasc. Biol. 2010;30:591–598. doi: 10.1161/ATVBAHA.109.197343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Morel O., Jesel L., Freyssinet J.M., Toti F. Cellular mechanisms underlying the formation of circulating microparticles. Arterioscler. Thromb. Vasc. Biol. 2011;31:15–26. doi: 10.1161/ATVBAHA.109.200956. [DOI] [PubMed] [Google Scholar]
  • 24.Malaver E., Romaniuk M.A., D’Atri L.P., Pozner R.G., Negrotto S., Benzadon R., Schattner M. NF-kappaB inhibitors impair platelet activation responses. J. Thromb. Haemost. 2009;7:1333–1343. doi: 10.1111/j.1538-7836.2009.03492.x. [DOI] [PubMed] [Google Scholar]
  • 25.Lee H.S., Kim S.D., Lee W.M., Endale M., Kamruzzaman S.M., Oh W.J., Cho J.Y., Kim S.K., Cho H.J., Park H.J., Rhee M.H. A noble function of BAY 11-7082: Inhibition of platelet aggregation mediated by an elevated cAMP-induced VASP, and decreased ERK2/JNK1 phosphorylations. Eur. J. Pharmacol. 2010;627:85–91. doi: 10.1016/j.ejphar.2009.11.005. [DOI] [PubMed] [Google Scholar]
  • 26.Guo M., Sahni S.K., Sahni A., Francis C.W. Fibrinogen regulates the expression of inflammatory chemokines through NF-kappaB activation of endothelial cells. Thromb. Haemost. 2004;92:858–866. doi: 10.1160/TH04-04-0261. [DOI] [PubMed] [Google Scholar]
  • 27.Sahler J., Bernard J.J., Spinelli S.L., Blumberg N., Phipps R.P. The Feverfew plant-derived compound, parthenolide enhances platelet production and attenuates platelet activation through NF-kappaB inhibition. Thromb. Res. 2011;127:426–434. doi: 10.1016/j.thromres.2010.12.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Groenewegen W.A., Heptinstall S. A comparison of the effects of an extract of feverfew and parthenolide, a component of feverfew, on human platelet activity in-vitro. J. Pharm. Pharmacol. 1990;42:553–557. doi: 10.1111/j.2042-7158.1990.tb07057.x. [DOI] [PubMed] [Google Scholar]
  • 29.Matsuda S., Ikeda Y., Aoki M., Toyama K., Watanabe K., Ando Y. Role of reduced glutathione on platelet functions. Thromb. Haemost. 1979;42:1324–1331. [PubMed] [Google Scholar]
  • 30.Fadok V.A., Bratton D.L., Rose D.M., Pearson A., Ezekewitz R.A., Henson P.M. A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature. 2000;405:85–90. doi: 10.1038/35011084. [DOI] [PubMed] [Google Scholar]
  • 31.Steffen P., Jung A., Nguyen D.B., Muller T., Bernhardt I., Kaestner L., Wagner C. Stimulation of human red blood cells leads to Ca(2+)-mediated intercellular adhesion. Cell. Calcium. 2011;50:54–61. doi: 10.1016/j.ceca.2011.05.002. [DOI] [PubMed] [Google Scholar]
  • 32.Kaestner L., Tabellion W., Lipp P., Bernhardt I. Prostaglandin E2 activates channel-mediated calcium entry in human erythrocytes: an indication for a blood clot formation supporting process. Thromb. Haemost. 2004;92:1269–1272. doi: 10.1160/TH04-06-0338. [DOI] [PubMed] [Google Scholar]
  • 33.Lang K.S., Roll B., Myssina S., Schittenhelm M., Scheel-Walter H.G., Kanz L., Fritz J., Lang F., Huber S.M., Wieder T. Enhanced erythrocyte apoptosis in sickle cell anemia, thalassemia and glucose-6-phosphate dehydrogenase deficiency. Cell. Physiol. Biochem. 2002;12:365–372. doi: 10.1159/000067907. [DOI] [PubMed] [Google Scholar]
  • 34.Lang P.A., Kasinathan R.S., Brand V.B., Duranton C., Lang C., Koka S., Shumilina E., Kempe D.S., Tanneur V., Akel A., Lang K.S., Foller M., Kun J.F., Kremsner P.G., Wesselborg S., Laufer S., Clemen C.S., Herr C., Noegel A.A., Wieder T., Gulbins E., Lang F., Huber S.M. Accelerated clearance of Plasmodium-infected erythrocytes in sickle cell trait and annexin-A7 deficiency. Cell. Physiol. Biochem. 2009;24:415–428. doi: 10.1159/000257529. [DOI] [PubMed] [Google Scholar]
  • 35.Dangel, O. [Wirkung von Stickstoffmonoxid auf die Thrombozytenfunktion von Guanylyl-Cyclase defizienten Mäusen. Lehrstuhl für Pharmakologie und Toxikologie der Fakultät für Medizin] Bochum (2007) 24.

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES