Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2010 Jun 28;15(4):517–529. doi: 10.2478/s11658-010-0026-0

The proliferation and differentiation of osteoblasts in co-culture with human umbilical vein endothelial cells: An improved analysis using fluorescence-activated cell sorting

Yu Zhang 1,2,3, Andreas Schedle 3, Michael Matejka 1, Xiaohui Rausch-Fan 1, Oleh Andrukhov 1,
PMCID: PMC6275724  PMID: 20585887

Abstract

The interaction of osteoblasts and endothelial cells plays a pivotal role in osteogenesis. This interaction has been extensively studied using their direct co-culture in vitro. However, co-culture experiments require clear discrimination between the two different cell types in the mixture, but this was rarely achieved. This study is the first to use fluorescence-activated cell sorting (FACS) for the separation and quantitative analysis of the proliferation and differentiation of MG-63 cells grown in direct co-culture with human umbilical vein endothelial cells (HUVECs). The cells of the MG-63 cell line have properties consistent with the characteristics of normal osteoblasts. We labeled HUVECs with fluorescent antibody against CD31 and used FACS to measure the proportions of each cell type and to separate them based on their different fluorescence intensities. The rate of proliferation of the MG-63 cells was estimated based on a count of the total viable cells and the proportion of MG-63 cells in the mixture. The mRNA expression levels of the osteoblast differentiation markers alkaline phosphatase (ALP), collagen type 1 (Coll-1) and osteocalcin (OC) in the MG-63 cells were measured via real-time PCR after the separation via FACS. We found that HUVECs stimulated the proliferation of the MG-63 cells after 72 h of co-culture, and inhibited it after 120 h of co-culture. The mRNA expression levels of ALP and Coll-1 significantly increased, whereas that of OC significantly decreased in MG-63 after co-culture with HUVECs. Using FACS for the quantitative analysis of the proliferation and differentiation of osteoblasts directly interacting with endothelial cells could have merit for further co-culture research.

Key words: Osteoblasts, Endothelial cells, Co-culture, Proliferation, Differentiation

Full Text

The Full Text of this article is available as a PDF (487.3 KB).

Abbreviations used

ALP

alkaline phosphatise

BSA

bovine serum albumin

Coll-1

collagen type 1

ECs

endothelial cells

FACS

fluorescence-activated sell sorting

FC

flow cytometry

FCS

fetal calf serum

FITC

fluorescein isothiocyanate

HUVECs

human umbilical vein endothelial cells

mRNA

messenger ribonucleic acid

OBs

osteoblasts

OC

osteocalcin

VEGF

vascular endothelial growth factor

References

  • 1.Olsen B.R., Reginato A.M., Wang W. Bone development. Annu. Rev. Cell Dev. Biol. 2000;16:191–220. doi: 10.1146/annurev.cellbio.16.1.191. [DOI] [PubMed] [Google Scholar]
  • 2.Sims N.A., Gooi J.H. Bone remodeling: Multiple cellular interactions required for coupling of bone formation and resorption. Semin. Cell Dev. Biol. 2008;19:444–451. doi: 10.1016/j.semcdb.2008.07.016. [DOI] [PubMed] [Google Scholar]
  • 3.Trueta J. The role of the vessels in osteogenesis. J. Bone Joint Surg. 1963;45B:402–418. [Google Scholar]
  • 4.Collin-Osdoby P. Role of vascular endothelial cells in bone biology. J. Cell. Biochem. 1994;55:304–309. doi: 10.1002/jcb.240550306. [DOI] [PubMed] [Google Scholar]
  • 5.Wang D.S., Miura M., Demura H., Sato K. Anabolic effects of 1,25-dihydroxyvitamin D3 on osteoblasts are enhanced by vascular endothelial growth factor produced by osteoblasts and by growth factors produced by endothelial cells. Endocrinology. 1997;138:2953–2962. doi: 10.1210/endo.138.7.5275. [DOI] [PubMed] [Google Scholar]
  • 6.Streeten E.A., Brandi M.L. Biology of bone endothelial cells. Bone Miner. 1990;10:85–94. doi: 10.1016/0169-6009(90)90084-s. [DOI] [PubMed] [Google Scholar]
  • 7.Clarkin C.E., Emery R.J., Pitsillides A.A., Wheeler-Jones C.P. Evaluation of VEGF-mediated signaling in primary human cells reveals a paracrine action for VEGF in osteoblast-mediated crosstalk to endothelial cells. J. Cell. Physiol. 2008;214:537–544. doi: 10.1002/jcp.21234. [DOI] [PubMed] [Google Scholar]
  • 8.Bouletreau P.J., Warren S.M., Spector J.A., Peled Z.M., Gerrets R.P., Greenwald J.A., Longaker M.T. Hypoxia and VEGF up-regulate BMP-2 mRNA and protein expression in microvascular endothelial cells: implications for fracture healing. Plast. Reconstr. Surg. 2002;109:2384–2397. doi: 10.1097/00006534-200206000-00033. [DOI] [PubMed] [Google Scholar]
  • 9.Finkenzeller G., Arabatzis G., Geyer M., Wenger A., Bannasch H., Stark G.B. Gene expression profiling reveals platelet-derived growth factor receptor alpha as a target of cell contact-dependent gene regulation in an endothelial cell-osteoblast co-culture model. Tissue Eng. 2006;12:2889–2903. doi: 10.1089/ten.2006.12.2889. [DOI] [PubMed] [Google Scholar]
  • 10.Villars F., Guillotin B., Amédée T., Dutoya S., Bordenave L., Bareille R., Amédée J. Effect of HUVEC on human osteoprogenitor cell differentiation needs heterotypic gap junction communication. Am. J. Physiol. Cell Physiol. 2002;282:C775–C785. doi: 10.1152/ajpcell.00310.2001. [DOI] [PubMed] [Google Scholar]
  • 11.Villars F., Bordenave L., Bareille R., Amédée J. Effect of human endothelial cells on human bone marrow stromal cell phenotype: role of VEGF? J. Cell. Biochem. 2000;79:672–685. doi: 10.1002/1097-4644(20001215)79:4<672::aid-jcb150>3.0.co;2-2. [DOI] [PubMed] [Google Scholar]
  • 12.Grellier M., Ferreira-Tojais N., Bourget C., Bareille R., Guillemot F., Amédée J. Role of vascular endothelial growth factor in the communication between human osteoprogenitors and endothelial cells. J. Cell. Biochem. 2009;106:390–398. doi: 10.1002/jcb.22018. [DOI] [PubMed] [Google Scholar]
  • 13.Kaigler D., Krebsbach P.H., West E.R., Horger K., Huang Y.C., Mooney D.J. Endothelial cell modulation of bone marrow stromal cell osteogenic potential. FASEB J. 2005;19:665–667. doi: 10.1096/fj.04-2529fje. [DOI] [PubMed] [Google Scholar]
  • 14.Guillotin B., Bareille R., Bourget C., Bordenave L., Amédée J. Interaction between human umbilical vein endothelial cells and human osteoprogenitors triggers pleiotropic effect that may support osteoblastic function. Bone. 2008;42:1080–1091. doi: 10.1016/j.bone.2008.01.025. [DOI] [PubMed] [Google Scholar]
  • 15.Herzenberg L.A., Parks D., Sahaf B., Perez O., Roederer M., Herzenberg L.A. The history and future of the fluorescence activated cell sorter and flow cytometry: a view from Stanford. Clin. Chem. 2002;48:1819–1827. [PubMed] [Google Scholar]
  • 16.Herzenberg L.A., Sweet R.G., Herzenberg L.A. Fluorescence-activated cell sorting. Sci. Am. 1976;234:108–117. doi: 10.1038/scientificamerican0376-108. [DOI] [PubMed] [Google Scholar]
  • 17.Fuchs S., Hofmann A., Kirkpatrick C.J., C.J. Microvessel-like structures from outgrowth endothelial cells from human peripheral blood in 2-dimensional and 3-dimensional co-cultures with osteoblastic lineage cells. Tissue Eng. 2007;13:2577–2588. doi: 10.1089/ten.2007.0022. [DOI] [PubMed] [Google Scholar]
  • 18.Rausch-Fan X., Qu Z., Wieland M., Matejka M., Schedle A. Differentiation and cytokine synthesis of human alveolar osteoblasts compared to osteoblast-like cells (MG63) in response to titanium surfaces. Dent. Mater. 2008;24:102–110. doi: 10.1016/j.dental.2007.03.001. [DOI] [PubMed] [Google Scholar]
  • 19.Pautke C., Schieker M., Tischer T., Kolk A., Neth P., Mutschler W., Milz S. Characterization of osteosarcoma cell lines MG-63, Saos-2 and U-2 OS in comparison to human osteoblasts. Anticancer Res. 2004;24:3743–3748. [PubMed] [Google Scholar]
  • 20.Moreau R., Aubin R., Lapointe J.Y., Lajeunesse D. Pharmacological and biochemical evidence for the regulation of osteocalcin secretion by potassium channels in human osteoblast-like MG-63 cells. J. Bone Miner. Res. 1997;12:1984–1992. doi: 10.1359/jbmr.1997.12.12.1984. [DOI] [PubMed] [Google Scholar]
  • 21.Boyan B.D., Batzer R., Kieswetter K., Liu Y., Cochran D.L., Szmuckler-Moncler S., Dean D.D., Schwartz Z. Titanium surface roughness alters responsiveness of MG63 osteoblast-like cells to 1 alpha,25-(OH)2D3. J. Biomed. Mater. Res. 1998;39:77–85. doi: 10.1002/(sici)1097-4636(199801)39:1<77::aid-jbm10>3.0.co;2-l. [DOI] [PubMed] [Google Scholar]
  • 22.Birch M.A., Skerry T.M. Differential regulation of syndecan expression by osteosarcoma cell lines in response to cytokines but not osteotropic hormones. Bone. 1999;24:571–578. doi: 10.1016/s8756-3282(99)00088-5. [DOI] [PubMed] [Google Scholar]
  • 23.Jonsson K.B., Frost A., Nilsson O., Ljunghall S., Ljunggren O. Three isolation techniques for primary culture of human osteoblast-like cells: a comparison. Acta Orthop. Scand. 1999;70:365–373. doi: 10.3109/17453679908997826. [DOI] [PubMed] [Google Scholar]
  • 24.Declercq H., Van der Vreken N., De Maeyer E., Verbeeck R., Schacht E., De Ridder L., Cornelissen M. Isolation, proliferation and differentiation of osteoblastic cells to study cell/biomaterial interactions: comparison of different isolation techniques and source. Biomaterials. 2004;25:757–768. doi: 10.1016/s0142-9612(03)00580-5. [DOI] [PubMed] [Google Scholar]
  • 25.Martinez M.E., del Campo M.T., Medina S., Sanchez M., Sanchez-Cabezudo M.J., Esbrit P., Martinez P., Moreno I., Rodrigo A., Garces M.V., Munuera L. Influence of skeletal site of origin and donor age on osteoblastic cell growth and differentiation. Calcif. Tissue Int. 1999;64:280–286. doi: 10.1007/s002239900619. [DOI] [PubMed] [Google Scholar]
  • 26.Unger R.E., Sartoris A., Peters K., Motta A., Migliaresi C., Kunkel M., Bulnheim U., Rychly J., Kirkpatrick C.J. Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary-like structures on three-dimensional porous biomaterials. Biomaterials. 2007;28:3965–3976. doi: 10.1016/j.biomaterials.2007.05.032. [DOI] [PubMed] [Google Scholar]
  • 27.Ng K.W., Leong D.T., Hutmacher D.W. The challenge to measure cell proliferation in two and three dimensions. Tissue Eng. 2005;11:182–191. doi: 10.1089/ten.2005.11.182. [DOI] [PubMed] [Google Scholar]
  • 28.Jones L.J., Gray M., Yue S.T., Haugland R.P., Singer V.L. Sensitive determination of cell number using the CyQUANT cell proliferation assay. J. Immunol. Methods. 2001;254:85–98. doi: 10.1016/s0022-1759(01)00404-5. [DOI] [PubMed] [Google Scholar]
  • 29.Finkenzeller, G., Mehlhorn, A.T., Schmal, H. and Stark, G.B. Post-transcriptional regulation of osteoblastic platelet-derived growth factor receptor-alpha expression by co-cultured primary endothelial cells. Cells Tissues Organs (2010) DOI: 10.1159/000276590 [DOI] [PubMed]
  • 30.Billiard J., Moran R.A., Whitley M.Z., Chaterjee-Kishore M., Gillis K., Brown E.L., Komm B.S., Bodine P.V. Transcriptional profiling of human osteoblast differentiation. J. Cell. Biochem. 2003;89:389–400. doi: 10.1002/jcb.10514. [DOI] [PubMed] [Google Scholar]
  • 31.Stein G.S., Lian J.B. Molecular mechanisms mediating proliferation/differentiation interrelationships during progressive development of the osteoblast phenotype. Endocr. Rev. 1993;14:424–442. doi: 10.1210/edrv-14-4-424. [DOI] [PubMed] [Google Scholar]
  • 32.Aubin J.E. Regulation of osteoblast formation and function. Rev. Endocr. Metab. Disord. 2001;2:81–94. doi: 10.1023/a:1010011209064. [DOI] [PubMed] [Google Scholar]
  • 33.Lian J.B., Stein G.S. Concepts of osteoblast growth and differentiation: basis for modulation of bone cell development and tissue formation. Crit. Rev. Oral. Biol. Med. 1992;3:269–305. doi: 10.1177/10454411920030030501. [DOI] [PubMed] [Google Scholar]
  • 34.Ducy P., Zhang R., Geoffroy V., Ridall A.L., Karsenty R. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell. 1997;89:747–754. doi: 10.1016/s0092-8674(00)80257-3. [DOI] [PubMed] [Google Scholar]
  • 35.Sun H., Qu Z., Guo Y., Zang G., Yang B. In vitro and in vivo effects of rat kidney vascular endothelial cells on osteogenesis of rat bone marrow mesenchymal stem cells growing on polylactide-glycoli acid (PLGA) scaffolds. Biomed. Eng. Online. 2007;6:41. doi: 10.1186/1475-925X-6-41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Meury T., Verrier S., Alini M. Human endothelial cells inhibit BMSC differentiation into mature osteoblasts in vitro by interfering with osterix expression. J. Cell. Biochem. 2006;98:992–1006. doi: 10.1002/jcb.20818. [DOI] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES