Abstract
Altered gene expression was associated with the induction and maintenance of hepatocellular carcinoma (HCC). To determine the significance of HCR2 in HCC, here we compare the expression levels of HCR2 in carcinoma and in paired non-carcinoma tissues using semiquantitative reverse-transcription polymerase chain reaction (RT-PCR), Western blot analysis, and immunohistochemical staining. The expression ratio (ER) of HCR2 between the tumor and paired tumor-free tissues was calculated for each case and the data was clinicopathologically analyzed. The expression of HCR2 mRNA was found to be significantly decreased in HCC tissues compared with paired normal tissues (P < 0.001). HCR2 was downregulated in 58% (n = 22) of 38 HCC patients. The ER of HCR2 was higher in Edmondson’s grade I/II carcinomas than that in Edmondson’s grade III/IV carcinomas (P < 0.05). Western blot analysis showed HCR2 to be notably depressed in carcinoma tissues in 3 out of 4 HCC patients. Immunohistochemical staining indicated most HCR2 protein accumulated in non-carcinoma cells. These results suggested that altered HCR2 expression might play roles in the carcinogenesis and progression of HCC, and it could be a clinical marker for prognosis, and a molecular target for screening potential anti-HCC drugs.
Key words: HCR2, Hepatocellular carcinoma, Gene expression
Full Text
The Full Text of this article is available as a PDF (637.4 KB).
Abbreviations used
- AFP
alpha fetoprotein
- β2-MG gene
β2-microglobulin gene
- CAT
catalase
- CBR1
carbonyl reductase 1
- ER
expression ratio
- GPx
glutathione peroxidase
- HCC
hepatocellular carcinoma
- HCR2
carbonyl reductase 2
- IgG
immunoglobulin
- ROS
reactive oxygen species
- RT-PCR
reverse-transcription polymerase chain reaction
- SDR
short chain dehydrogenases/reductases
- SOD
superoxide dismutase
References
- 1.Tang Z.Y. Hepatocellular carcinoma — cause, treatment and metastasis. World J. Gastroenterol. 2001;7:445–454. doi: 10.3748/wjg.v7.i4.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Mori T., Nomoto S., Koshikawa K., Fujii T., Sakai M., Nishikawa Y., Inoue S., Takeda S., Kaneko T., Nakao A. Decreased expression and frequent allelic inactivation of the RUNX3 gene at 1p36 in human hepatocellular carcinoma. Liver Int. 2005;25:380–388. doi: 10.1111/j.1478-3231.2005.1059.x. [DOI] [PubMed] [Google Scholar]
- 3.Zhang Y.J., Chen Y., Ahsan H., Lunn R.M., Chen S.Y., Lee P.H., Chen C.J., Santella R.M. Silencing of glutathione S-transferaseP1 by promoter hypermethylation and its relationship to environmental chemical carcinogens in hepatocellular carcinoma. Cancer Lett. 2005;221:135–143. doi: 10.1016/j.canlet.2004.08.028. [DOI] [PubMed] [Google Scholar]
- 4.Moriyama M., Mikuni M., Longren W., Zhao Z.Y., Wang X.Q., Oshiro S., Matsumura H., Aoki H., Ichijima S., Iwasaki H., Tanaka N., Abe K., Arakawa Y. Epidemiology of SEN virus infection among patients with hepatitis B and C in China. Hepatol. Res. 2003;27:174–180. doi: 10.1016/S1386-6346(03)00238-9. [DOI] [PubMed] [Google Scholar]
- 5.Nakagawa J., Ishikura S., Asami J., Isaji T., Usami N., Hara A., Sakurai T., Tsuritani K., Oda K., Takahashi M., Yoshimoto M., Otsuka N., Kitamura K. Molecular characterization of mammalian Dicarbonyl/L-Xylulose reductase and its localization in kidney. J. Bio. Chem. 2002;277:17883–17891. doi: 10.1074/jbc.M110703200. [DOI] [PubMed] [Google Scholar]
- 6.Roberts M.J., Wondrak G.T., Laurean D.C., Jacobson M.K., Jacobson E.L. DNA damage by carbonyl stress in human skin cells. Mutat. Res. 2003;522:45–56. doi: 10.1016/s0027-5107(02)00232-4. [DOI] [PubMed] [Google Scholar]
- 7.Weiss M.F., Erhard P., Kader-Attia F.A., Wu Y.C., DeOreo P.B., Araki A., Glomb M.A., Monnier V.M. Mechanisms for the formation of glycoxidation products in end-stage renal disease. Kidney Int. 2000;57:2571–2585. doi: 10.1046/j.1523-1755.2000.00117.x. [DOI] [PubMed] [Google Scholar]
- 8.Wiseman H., Halliwell B. Damage to DNA by reactive oxygen and mitogen species: role in inflammatory disease and progression to cancer. Biochem. J. 1996;313:17–29. doi: 10.1042/bj3130017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Cerutti P.A. Oxy-radicals and cancer. Lancet. 1994;344:862–863. doi: 10.1016/S0140-6736(94)92832-0. [DOI] [PubMed] [Google Scholar]
- 10.Edmondson H.A., Steiner P.E. Primary carcinoma of the liver. A study of 100 cases among 48,900 necropsies. Cancer. 1954;7:462–503. doi: 10.1002/1097-0142(195405)7:3<462::aid-cncr2820070308>3.0.co;2-e. [DOI] [PubMed] [Google Scholar]
- 11.Gussow D., Rein R., Ginjaar I., Hochstenbach F., Seemann G., Kottman A., Ploegh H.L. The human beta-2-microglobulin gene: primary structure and definition of the transcriptional unit. J. Immunol. 1987;139:3132–3138. [PubMed] [Google Scholar]
- 12.Ozaki I., Mizuta T., Zhao G., Yotsumoto H., Hara T., Kajihara S., Hisatomi A., Sakai T., Yamamoto K. Involvement of the Ets-1 gene in overexpression of matrilysin in human hepatocellular carcinoma. Cancer Res. 2000;60:6519–6525. [PubMed] [Google Scholar]
- 13.Iizuka N., Oka M., Yamada-Okabe H., Mori N., Tamesa T., Okada T., Takemoto N., Tangoku A., Hamada K., Nakayama H., Miyamoto T., Uchimura S., Hamamoto Y. Comparison of gene expression profiles between hepatitis B virus-and hepatitis C virus-infected hepatocellular carcinoma by oligonucleotide microarray data on the basis of a supervised learning method. Cancer Res. 2002;62:3939–3944. [PubMed] [Google Scholar]
- 14.Craemer D.D., Pauwels M., Hautekeete M., Roels F. Alteration of hepatocellular peroxisomes in patients with cancer. Cancer. 1993;71:3851–3858. doi: 10.1002/1097-0142(19930615)71:12<3851::aid-cncr2820711210>3.0.co;2-l. [DOI] [PubMed] [Google Scholar]
- 15.Kawaguchi T., Suzuki K., Matsuda Y. Serum-manganese-superoxide dismutase: normal values and increased levels in patients with acute myocardial infarction and several malignant dieseases determined by an enzyme-linked immunosorbent assay using a monoclonal antibody. J. Immunol. Methods. 1990;127:249–254. doi: 10.1016/0022-1759(90)90075-7. [DOI] [PubMed] [Google Scholar]
- 16.Suto K., Kajihara-Kano H., Yokoyama Y., Hayakari M., Kimura J., Kumano T., Takahata T., Kudo H., Tsuchida S. Decreased expression of the peroxisomal bifunctional enzyme and carbonyl reductase in human hepatocellular carcinomas. J. Cancer. Res. Clin. Oncol. 1999;125:83–88. doi: 10.1007/s004320050246. [DOI] [PubMed] [Google Scholar]
- 17.Tada M., Yokosuka O., Fukai K., Chiba T., Imazeki F., Tokuhisa T., Saisho H. Hypermethylation of NAD(P)H: quinone oxidoreductase 1 (NQO1) gene in human hepatocellular carcinoma. J. Hepatol. 2005;42:511–519. doi: 10.1016/j.jhep.2004.11.024. [DOI] [PubMed] [Google Scholar]
- 18.Zhong S., Tang M.W., Yeo W., Liu C., Lo Y.M., Johnson P.J. Silencing of GSTP1 gene by CpG island DNA hypermethylation in HBV-associated hepatocellular carcinomas. Clin. Cancer Res. 2002;8:1087–1092. [PubMed] [Google Scholar]
- 19.Forrest G.L., Gonzalez B. Carbonyl reductase. Chem. Biol. Interact. 2000;129:21–40. doi: 10.1016/S0009-2797(00)00196-4. [DOI] [PubMed] [Google Scholar]
- 20.Pulling L.C., Klinge D.M., Belinsky S.A. p16INK4a and beta-catenin alterations in rat liver tumors induced by NNK. Carcinogenesis. 2001;22:461–466. doi: 10.1093/carcin/22.3.461. [DOI] [PubMed] [Google Scholar]
- 21.Ismail E., Al-Mulla F., Tsuchida S., Suto K., Motley P., Harrison P.R., Birnie G.D. Carbonyl reductase: a novel metastasis modulating function. Cancer Res. 2000;60:1173–1176. [PubMed] [Google Scholar]
- 22.Umemotol M., Yokoyamal Y., Satol S., Tsuchida S., Al-Mulla F., Saitol Y. Carbonyl reductase as a significant predictor of survival and lymph node metastasis in epithelial ovarian cancer. Br. J. Cancer. 2001;85:1032–1036. doi: 10.1038/sj.bjc.6692034. [DOI] [PMC free article] [PubMed] [Google Scholar]