Abstract
Dendrimers, highly branched macromolecules with a specific size and shape, provide many exciting opportunities for biomedical applications. However, most dendrimers demonstrate toxic and haemolytic activity because of their positively charged surface. Masking the peripheral cationic groups by coating them with biocompatible molecules is a method to reduce it. It was proven that modified dendrimers can even diminish haemolytic activity of encapsulated drugs. Experiments confirmed that anionic dendrimers are less haemotoxic than cationic ones. Due to the high affinity of dendrimers for serum proteins, presence of these components in an incubation buffer might also influence red blood cell (RBC)-dendrimer interactions and decrease the haemolysis level. Generally, haemotoxicity of dendrimers is concentration-, generation-, and time-dependent. Various changes in the RBCs’ shape in response to interactions with dendrimers have been observed, from echinocytic transformations through cell aggregation to cluster formation, depending on the dendrimer’s type and concentration. Understanding the physical and chemical origins of dendrimers’ influences on RBCs might advance scientists’ ability to construct dendrimers more suitable for medical applications.
Key words: Dendrimer, Erythrocytes, Haemolysis, Red blood cell, Red blood cell morphology, Toxicity
Full Text
The Full Text of this article is available as a PDF (699.7 KB).
Abbreviations used
- AFM
atomic force microscopy
- CSi
carbosilane dendrimers
- DOX
doxorubicin
- FA
folic acid
- HSA
human serum albumin
- MRI
magnetic resonance imaging
- PAD-PPI
dextran conjugated PPI dendrimers
- PAMAM
polyamidoamine dendrimers
- PEG
poly(ethylene glycol)
- PEO
poly(ethylene oxide)
- PPI
poly(propyleneimine) dendrimers
- PPI-DAB
PPI dendrimers with diaminobutane core
- PPI-DAE
PPI dendrimers with diaminoethane core
- RBCs
red blood cells
- Rms
AFM roughness values
Footnotes
Paper authored by participants of the international conference: 18th Meeting, European Association for Red Cell Research, Wrocław — Piechowice, Poland, May 12–15th, 2011. Publication cost was covered by the organizers of this meeting.
References
- 1.Tomalia D.A., Baker H., Dewald J.R., Hall M., Kallos G., Martin S., Roeck S., Ryder J., Smith P. A new class of polymers: Starburstdendric macromolecules. Polym. J. 1985;17:117–132. doi: 10.1295/polymj.17.117. [DOI] [Google Scholar]
- 2.Newkome G.R., Yao Z.Q., Baker G.R., Gupta V.K. Cascade molecules: A new approach to micelles, A[27]-arborol. J. Org. Chem. 1985;50:2003–2006. doi: 10.1021/jo00211a052. [DOI] [Google Scholar]
- 3.Tomalia D.A., Naylor A.M., Goddard W.A., III Starburst Dendrimers: Molecular-Level Control of Size, Shape, Surface Chemistry, Topology, and Flexibility from Atoms to Macroscopic Matter. Angew. Chem. Int. Ed. Engl. 1990;29:138–175. doi: 10.1002/anie.199001381. [DOI] [Google Scholar]
- 4.Dykes G.M., Brierley L.J., Smith D.K., McGrail P.T., Seeley G.J. Supramolecular solubilisation of hydrophilic dyes by using individual dendritic branches. Chemistry. 2001;7(21):4730–4739. doi: 10.1002/1521-3765(20011105)7:21<4730::AID-CHEM4730>3.0.CO;2-A. [DOI] [PubMed] [Google Scholar]
- 5.Frechet J.M.J. Dendrimers and supramolecular chemistry. Proc. Natl. Acad. Sci. U. S. A. 2002;99:4782–4787. doi: 10.1073/pnas.082013899. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Lee C.C., MacKay J.A., Fréchet J.M., Szoka F.C. Designing dendrimers for biological applications. Nat. Biotechnol. 2005;23:1517–1526. doi: 10.1038/nbt1171. [DOI] [PubMed] [Google Scholar]
- 7.Domanski D.M., Klajnert B., Bryszewska M. Influence of PAMAM dendrimers on human red blood cells. Bioelectrochemistry. 2004;63:189–191. doi: 10.1016/j.bioelechem.2003.09.023. [DOI] [PubMed] [Google Scholar]
- 8.Dykes G.M. Dendrimers: a review of their appeal and applications. J. Chem. Technol. Biotechnol. 2001;79:903–918. doi: 10.1002/jctb.464. [DOI] [Google Scholar]
- 9.Bumb A., Brechbiel M.W., Choyke P. Macromolecular and dendrimerbased magnetic resonance contrast agents. Acta Radiol. 2010;51:751–767. doi: 10.3109/02841851.2010.491091. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Bourne M. W., Margerun L., Hylton N., Campion B., Lai J. J., Derugin N., Higgins C.B. Evaluation of the effects of intravascular MR contrast media (gadolinium dendrimer) on 3D time of flight magnetic resonance angiography of the body. J. Magn. Reson. Imaging. 1996;6:305–310. doi: 10.1002/jmri.1880060209. [DOI] [PubMed] [Google Scholar]
- 11.Boas U., Heegaard P.M. Dendrimers in drug research. Chem. Soc. Rev. 2004;33:43–63. doi: 10.1039/b309043b. [DOI] [PubMed] [Google Scholar]
- 12.Malik N., Wiwattanapatapee R., Klopsch R., Lorenz K., Frey H., Weener J.W., Meijer E.W., Paulus W., Duncan R. Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. J. Control Release. 2000;65:133–148. doi: 10.1016/S0168-3659(99)00246-1. [DOI] [PubMed] [Google Scholar]
- 13.Bhadra D., Yadav A.K., Bandra S., Jain N.K. Glycodendrimeric nanoparticulate carriers of primaquine phosphate for liver targeting. Int. J. Pharm. 2005;295:221–223. doi: 10.1016/j.ijpharm.2005.01.026. [DOI] [PubMed] [Google Scholar]
- 14.Bhadra D., Bhadra S., Jain N.K. PEGylated peptide dendrimeric carriers for the delivery of antimalarial drug chloroquine phosphate. Pharm. Res. 2006;23:623–633. doi: 10.1007/s11095-005-9396-9. [DOI] [PubMed] [Google Scholar]
- 15.Lee H., Larson R.G. Lipid bilayer curvature and pore formation induced by charged linear polymers and dendrimers: the effect of molecular shape. J. Phys. Chem. B. 2008;112:12279–12285. doi: 10.1021/jp805026m. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Choi S.H., Lee S.H., Park T.G. Temperature-sensitive pluronic/poly(ethylenimine) nanocapsules for thermally triggered disruption of intracellular endosomal compartment. Biomacromolecules. 2006;7:1864–1870. doi: 10.1021/bm060182a. [DOI] [PubMed] [Google Scholar]
- 17.Dutta T., Jain N.K., McMillan N.A., Parekh H.S. Dendrimer nanocarriers as versatile vectors in gene delivery. Nanomedicine. 2010;6:25–34. doi: 10.1016/j.nano.2009.05.005. [DOI] [PubMed] [Google Scholar]
- 18.Pedziwiatr-Werbicka E., Ferenc M., Zaborski M., Gabara B., Klajnert B., Bryszewska M. Characterization of complexes formed by polypropylene imine dendrimers and anti-HIV oligonucleotides. Colloids Surf. B. Biointerfaces. 2011;83:360–366. doi: 10.1016/j.colsurfb.2010.12.008. [DOI] [PubMed] [Google Scholar]
- 19.Wilbur D., Pathare P., Hamlin D., Bhular K., Vessela R. Biotin reagents for antibody pretargeting: Synthesis, radioiodination, and evaluation of biotinylated starburst dendrimers. Bioconj. Chem. 1998;9:813–825. doi: 10.1021/bc980055e. [DOI] [PubMed] [Google Scholar]
- 20.Singh P., Gupta U., Asthana A., Jain N.K. Folate and Folate-PEGPAMAM Dendrimers: Synthesis, Characterization, and Targeted Anticancer Drug Delivery Potential in Tumor Bearing Mice. Bioconjug. Chem. 2008;19:2239–2252. doi: 10.1021/bc800125u. [DOI] [PubMed] [Google Scholar]
- 21.Wang Y., Guo R., Cao X., Shen M., Shi X. Encapsulation of 2-methoxyestradiol within multifunctional poly(amidoamine) dendrimers for targeted cancer therapy. Biomaterials. 2011;32:3322–3329. doi: 10.1016/j.biomaterials.2010.12.060. [DOI] [PubMed] [Google Scholar]
- 22.Zhang T.L., Gao Y.X., Lu J.F., Wang K. Arsenite, arsenate and vanadate affect human erythrocyte membrane. J. Inorg. Biochem. 2000;79:195–203. doi: 10.1016/S0162-0134(99)00155-5. [DOI] [PubMed] [Google Scholar]
- 23.Zhang Z.-Y., Smith B.D. High-generation polycationic dendrimers are unusually effective at disrupting anionic vesicles: membrane bending model. Bioconjug. Chem. 2000;11:805–814. doi: 10.1021/bc000018z. [DOI] [PubMed] [Google Scholar]
- 24.Klajnert B., Bryszewska M. Fluorescence studies on PAMAM dendrimers interactions with bovine serum albumin. Bioelectrochemistry. 2002;55:33–35. doi: 10.1016/S1567-5394(01)00170-0. [DOI] [PubMed] [Google Scholar]
- 25.Klajnert B., Sadowska M., Bryszewska M. The effect of polyamidoamine dendrimers on human erythrocyte membrane acetylcholinesterase activity. Bioelectrochemistry. 2004;65:23–26. doi: 10.1016/j.bioelechem.2004.06.004. [DOI] [PubMed] [Google Scholar]
- 26.Ottaviani M.F., Matteini P., Brustolon M., Turro N.J., Jockusch S., Tomalia D.A. Characterization of starburst dendrimers and vesicle solutions and their interactions by CW- and Pulsed-EPR, TEM, and dynamic light scattering. J. Phys. Chem. B. 1998;102:6029–6039. doi: 10.1021/jp980715c. [DOI] [Google Scholar]
- 27.Ottaviani M.F., Daddi R., Brustolon M., Turro N.J., Tomalia D.A. Structural modifications of DMPC vesicles upon interaction with polyamidoamine dendrimers studied by CW-electron paramagnetic resonance and electron spin-echo techniques. Langmuir. 1999;15:1973–1980. doi: 10.1021/la9803068. [DOI] [Google Scholar]
- 28.Ottaviani M.F., Favuzza P., Sacchi B., Turro N.J., Jockusch S., Tomalia D.A. Interactions between starburst dendrimers and mixed DMPC/DMPA-Na vesicles studied by spin label and spin probe techniques, supported by transmission electron microscopy. Langmuir. 2002;18:2347–2357. doi: 10.1021/la010771w. [DOI] [Google Scholar]
- 29.Zhang Z.-Y., Smith B.D. High-generation polycationic dendrimers are unusually effective at disrupting anionic vesicles: membrane bending model. Bioconjug. Chem. 2000;11:805–814. doi: 10.1021/bc000018z. [DOI] [PubMed] [Google Scholar]
- 30.Karoonuthaisiri N., Titiyevskiy K., Thomas J.L. Destabilization of fatty acid-containing liposomes by polyamidoamine dendrimers. Colloids Surf. B: Biointerfaces. 2003;27:365–375. doi: 10.1016/S0927-7765(02)00115-7. [DOI] [Google Scholar]
- 31.Hong S., Bielinska A.U., Mecke A., Keszler B., Beals J., Shi X., Balogh L., Orr B.G., Baker J.R., Jr., Banaszak Holl M.M. Interactions of poly(amidoamine) dendrimers with supported lipid bilayer and cells: Hole formation and the relation to transport. Boconjug. Chem. 2004;15:774–782. doi: 10.1021/bc049962b. [DOI] [PubMed] [Google Scholar]
- 32.Klajnert B., Epand R. M. PAMAM dendrimers and model membranes: Differential scanning calorimetry studies. Int. J. Pharm. 2005;305:154–166. doi: 10.1016/j.ijpharm.2005.08.015. [DOI] [PubMed] [Google Scholar]
- 33.Gardikis K., Hatziantoniou S., Viras K., Wagner M., Demetzos C. A DSC and Raman spectroscopy study on the effect of PAMAM dendrimer on DPPC model lipid membranes. Int. J. Phar. 2006;318:118–123. doi: 10.1016/j.ijpharm.2006.03.023. [DOI] [PubMed] [Google Scholar]
- 34.Mecke A., Uppuluri S., Sassanella T.J., Lee D.K., Ramamoorthy A., Baker J.R., Orr B.G., Banaszak Holl M.M. Direct observation of lipid bilayer disruption by poly(amidoamine) dendrimers. Chem. Phys. Lipids. 2004;132:3–14. doi: 10.1016/j.chemphyslip.2004.09.001. [DOI] [PubMed] [Google Scholar]
- 35.Fischer D., Li Y., Ahlemeyer B., Krieglstein J., Kissel T. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and haemolysis. Biomaterials. 2003;24:1121–1131. doi: 10.1016/S0142-9612(02)00445-3. [DOI] [PubMed] [Google Scholar]
- 36.Mecke A., Uppuluri S., Sassanella T.M., Lee D.K., Ramamoorthy A., Baker J.R., Jr, Orr B.G., Banaszak Holl M.M. Direct observation of lipid bilayer disruption by poly(amidoamine) dendrimers. Chem. Phys. Lipids. 2004;132:3–14. doi: 10.1016/j.chemphyslip.2004.09.001. [DOI] [PubMed] [Google Scholar]
- 37.Duncan R., Izzo L. Dendrimer biocompatibility and toxicity. Adv. Drug Deliv. Rev. 2005;57:2215–2237. doi: 10.1016/j.addr.2005.09.019. [DOI] [PubMed] [Google Scholar]
- 38.Klajnert, B. and Bryszewska, M. Synthesis and structure. in Dendrimers in medicine, 1st edition, Nova Science Pub. Inc., 2007, 7–18.
- 39.Janiszewska J., Swieton J., Lipkowski A.W., Urbanczyk-Lipkowska Z. Low molecular mass peptide dendrimers that express antimicrobial properties. Bioorg. Med. Chem. Lett. 2003;13:3711–3713. doi: 10.1016/j.bmcl.2003.08.009. [DOI] [PubMed] [Google Scholar]
- 40.Klajnert B., Janiszewska J., Urbanczyk-Lipkowska Z., Bryszewska M., Shcharbin D., Labieniec M. Biological properties of low molecular mass peptide dendrimers. Int. J. Pharm. 2006;309:208–217. doi: 10.1016/j.ijpharm.2005.10.039. [DOI] [PubMed] [Google Scholar]
- 41.Domanski D.M., Bryszewska M., Salamończyk G. Preliminary evaluation of the behavior of fifth-generation thiophosphate dendrimer in biological systems. Biomacromolecules. 2004;5:2007–2012. doi: 10.1021/bm0497466. [DOI] [PubMed] [Google Scholar]
- 42.Wang W., Xiong W., Zhu Y., Xu H., Yang X. Protective effect of PEGylation against poly(amidoamine) dendrimer-induced haemolysis of human red blood cells. J. Biomed. Mater. Res. B. Appl. Biomater. 2010;93:59–64. doi: 10.1002/jbm.b.31558. [DOI] [PubMed] [Google Scholar]
- 43.Mao S., Neu M., Germershaus O., Merkel O., Sitterberg J., Bakowsky U., Kissel T. Influence of polyethylene glycol chain length on the physicochemical and biological properties of poly(ethylene imine)-graftpoly( ethylene glycol) block copolymer/SiRNA polyplexes. Bioconj. Chem. 2006;17:1209–1218. doi: 10.1021/bc060129j. [DOI] [PubMed] [Google Scholar]
- 44.Wang W., Xiong W., Wan J., Sun X., Xu H., Yang X. The decrease of PAMAM dendrimer-induced cytotoxicity by PEGylation via attenuation of oxidative stress. Nanotechnology. 2009;20:105103. doi: 10.1088/0957-4484/20/10/105103. [DOI] [PubMed] [Google Scholar]
- 45.Jevprasesphant R., Penny J., Jalal R., Attwood D., McKeown N.B., D’Emanuele A. The influence of surface modification on the cytotoxicity of PAMAM dendrimers. Int. J. Pharm. 2003;252:263–266. doi: 10.1016/S0378-5173(02)00623-3. [DOI] [PubMed] [Google Scholar]
- 46.Chen H.T., Neerman M.F., Parrish A.R., Simanek E.E. Cytotoxicity, haemolysis, and acute in vivo toxicity of dendrimers based on melamine, candidate vehicles for drug delivery. J. Am. Chem. Soc. 2006;126:10044–10048. doi: 10.1021/ja048548j. [DOI] [PubMed] [Google Scholar]
- 47.Klajnert B., Appelhans D., Komber H., Morgner N., Schwarz S., Richter S., Brutschy B., Ionov M., Tonkikh A.K., Bryszewska M., Voit B. The influence of densely organized maltose shells on the biological properties of poly(propylene imine) dendrimers: new effects dependent on hydrogen bonding. Chemistry. 2008;14:7030–7041. doi: 10.1002/chem.200800342. [DOI] [PubMed] [Google Scholar]
- 48.Navath R.S., Menjoge A.R., Wang B., Romero R., Kannan S., Kannan R.M. Amino acid-functionalized dendrimers with heterobifunctional chemoselective peripheral groups for drug delivery applications. Biomacromolecules. 2010;11:1544–1563. doi: 10.1021/bm100186b. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.Wang P., Zhao X.H., Wang Z.Y., Meng M., Li X., Ning Q. Generation 4 polyamidoamine dendrimers is a novel candidate of nanocarrier for gene delivery agents in breast cancer treatment. Cancer Lett. 2010;298:34–49. doi: 10.1016/j.canlet.2010.06.001. [DOI] [PubMed] [Google Scholar]
- 50.Gupta U., Dwivedi S.K., Bid H.K., Konwar R., Jain N.K. Ligand anchored dendrimers based nanoconstructs for effective targeting to cancer cells. Int. J. Pharm. 2010;393:185–196. doi: 10.1016/j.ijpharm.2010.04.002. [DOI] [PubMed] [Google Scholar]
- 51.Agarwal A., Gupta U., Asthana A., Jain N.K. Dextran conjugated dendritic nanoconstructs as potential vectors for anti-cancer agent. Biomaterials. 2009;30:3588–3596. doi: 10.1016/j.biomaterials.2009.03.016. [DOI] [PubMed] [Google Scholar]
- 52.Bhadra D., Bhadra S., Jain S., Jain N.K. A PEGylated dendritic nanoparticulate carrier of fluorouracil. Int. J. Pharm. 2003;257:111–124. doi: 10.1016/S0378-5173(03)00132-7. [DOI] [PubMed] [Google Scholar]
- 53.Agrawal P., Gupta U., Jain N.K. Glycoconjugated peptide dendrimersbased nanoparticulate system for the delivery of chloroquine phosphate. Biomaterials. 2007;28:3349–3359. doi: 10.1016/j.biomaterials.2007.04.004. [DOI] [PubMed] [Google Scholar]
- 54.Klajnert B., Pikala S., Bryszewska M. Haemolytic activity of polyamidoamine dendrimers and the protective role of human serum albumin. Proc. R. Soc. A. 2010;466:1527–1534. doi: 10.1098/rspa.2009.0050. [DOI] [Google Scholar]
- 55.Shcharbin D., Janicka M., Wasiak M., Palecz B., Przybyszewska M., Zaborski M., Bryszewska M. Serum albumins have five sites for binding of cationic dendrimers. Biochim. Biophys. Acta. 2007;1774:946–961. doi: 10.1016/j.bbapap.2007.04.016. [DOI] [PubMed] [Google Scholar]
- 56.Bessis M. Red cell shapes: an illustrated classification and its rationale. In: Bessis M., Wed R.I., LeBond P.F., editors. Red Cell Shapes. New York: Springer; 1973. pp. 1–23. [Google Scholar]
- 57.Sheetz P., Singer S.J. Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. Proc. Natl. Acad. Sci. U. S. A. 1974;71:4457–4461. doi: 10.1073/pnas.71.11.4457. [DOI] [PMC free article] [PubMed] [Google Scholar]