Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2011 Dec 28;17(1):136–152. doi: 10.2478/s11658-011-0042-8

Inhibition of biogenic membrane flippase activity in reconstituted ER proteoliposomes in the presence of low cholesterol levels

Archita Rajasekharan 1, Sathyanarayana N Gummadi 1,
PMCID: PMC6275754  PMID: 22207336

Abstract

Biogenic membranes or self-synthesizing membranes are the site of synthesis of new lipids such as the endoplasmic reticulum (ER) in eukaryotes. Newly synthesized phospholipids (PLs) at the cytosolic leaflet of ER need to be translocated to the lumen side for membrane biogenesis and this is facilitated by a special class of lipid translocators called biogenic membrane flippase. Even though ER is the major site of cholesterol synthesis, it contains very low amounts of cholesterol, since newly synthesized cholesterol in ER is rapidly transported to other organelles and is highly enriched in plasma membrane. Thus, only low levels of cholesterol are present at the biosynthetic compartment (ER), which results in loose packing of ER lipids. We hypothesize that the prevalence of cholesterol in biogenic membranes might affect the rapid flip-flop. To validate our hypothesis, detergent solubilized ER membranes from both bovine liver and spinach leaves were reconstituted into proteoliposomes with varying mol% of cholesterol. Our results show that (i) with increase in the cholesterol/PL ratio, the half-life time of PL translocation increased, suggesting that cholesterol affects the kinetics of flipping, (ii) flipping activity was completely inhibited in proteoliposomes reconstituted with 1 mol% cholesterol, and (iii) FRAP and DSC experiments revealed that 1 mol% cholesterol did not alter the bilayer properties significantly and that flippase activity inhibition is probably mediated by interaction of cholesterol with the protein.

Key words: Biogenic membrane flippase, Cholesterol, Endoplasmic reticulum, Flip flop

Full Text

The Full Text of this article is available as a PDF (947.8 KB).

Abbreviations used

DTT

dithiothreitol

ePC

egg phosphatidylcholine

ER

endoplasmic reticulum

HEPES

N-(2-hydroxyethyl)piperazine-N′-2-ethanesulfonic acid

HLT1

first half-life time

HLT2

second half-life time

MOPS

3-(N-morpholino)propanesulfonic acid

NBD-PC

1-oleoyl-2-{12-[(7-nitro-2-1,3-benzoxadiazol-4-yl)aminododecanoyl}-sn-glycero-3-phosphocholine

PC

phosphatidylcholine

PL

phospholipid

PM

plasma membrane

PMSF

phenylmethanesulfonylfluoride

SWER

salt-washed endoplasmic reticulum

TE

Triton X-100 extract

References

  • 1.Albert A.D., Boesze-Battaglia K. The role of cholesterol in rod outer segment membranes. Prog. Lipid Res. 2005;44:99–124. doi: 10.1016/j.plipres.2005.02.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Yeagle P.L. Modulation of membrane function by cholesterol. Biochemie. 1991;73:1303–1310. doi: 10.1016/0300-9084(91)90093-G. [DOI] [PubMed] [Google Scholar]
  • 3.López-Revuelta A., Sánchez-Gallego J.I., García-Montero C.A., Hernández-Hernández A., Sánchez-Yagüe J., Llanillo M. Membrane cholesterol in the regulation of aminophospholipid asymmetry and phagocytosis in oxidized erythrocytes. Free. Radic. Biol. Med. 2007;42:1106–1118. doi: 10.1016/j.freeradbiomed.2007.01.010. [DOI] [PubMed] [Google Scholar]
  • 4.Lange Y., Echevarria F., Steck T.L. Movement of zymosterol, a precursor of cholesterol, among three membranes in human fibroblast. J. Biol. Chem. 1991;266:21439–21443. [PubMed] [Google Scholar]
  • 5.Ridsdale A., Denis M., Gougeon P.Y., Ngsee J.K., Presley J.F., Zha X. Cholesterol is required for efficient endoplasmic reticulum-to-Golgi transport of secretory membrane proteins. Mol. Biol. Cell. 2006;17:1593–1605. doi: 10.1091/mbc.E05-02-0100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.DeGrella R.F., Simonia R.D. Intracellular transport of cholesterol to the plasma membrane. J. Biol. Chem. 1982;257:14256–14262. [PubMed] [Google Scholar]
  • 7.Kornberg R.D., McConnell H.M. Inside-outside transitions of phospholipids in vesicle membranes. Biochemistry. 1971;10:1111–1120. doi: 10.1021/bi00783a003. [DOI] [PubMed] [Google Scholar]
  • 8.Gummadi S.N., Kumar K.S. The mystery of phospholipid flip-flop in biogenic membranes. Cell. Mol. Biol. Lett. 2005;10:101–121. [PubMed] [Google Scholar]
  • 9.Menon A. K. Flippases. Trends Cell. Biol. 1995;5:355–360. doi: 10.1016/S0962-8924(00)89069-8. [DOI] [PubMed] [Google Scholar]
  • 10.Hrafnsdo’ttir S., Menon A.K. Reconstitution and partial characterization of phospholipid flippase activity from detergent extracts of Bacillus subtilis cell membrane. J. Bacteriol. 2000;182:4198–4206. doi: 10.1128/JB.182.15.4198-4206.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Gummadi S.N., Menon A.K. Transbilayer movement of dipalmitoylphosphatidylcholine in proteoliposomes reconstituted from detergent extracts of endoplasmic reticulum: kinetics of transbilayer transport mediated by a single flippase and identification of protein fractions enriched in flippase activity. J. Biol. Chem. 2002;277:25337–25343. doi: 10.1074/jbc.M203809200. [DOI] [PubMed] [Google Scholar]
  • 12.Sahu S.K., Gummadi S.N. Flippase activity in proteoliposomes reconstituted with Spinacea oleracea endoplasmic reticulum membrane proteins: evidence of biogenic membrane flippase in plants. Biochemistry. 2008;47:10481–10490. doi: 10.1021/bi8014339. [DOI] [PubMed] [Google Scholar]
  • 13.Lord J.M., Kiagawva T., Beevers H. Intracellular distribution of enzymes of the cytidine diphosphate choline pathway in castor bean endosperm. Proc. Nat. Acad. Sci. U.S.A. 1972;69:2429–2432. doi: 10.1073/pnas.69.9.2429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Backer J.M., Dawidowicz E.A. Reconstitution of a phospholipid flippase from rat liver microsomes. Nature. 1987;327:341–343. doi: 10.1038/327341a0. [DOI] [PubMed] [Google Scholar]
  • 15.Menon A.K., Watkins W.E., Hrafnsdo’ttir S. Specific proteins are required to translocate phosphatidylcholine bidirectionally across the endoplasmic reticulum. Curr Biol. 2000;10:241–252. doi: 10.1016/S0960-9822(00)00356-0. [DOI] [PubMed] [Google Scholar]
  • 16.Lèvy D., Bluzat A., Seigneuret M., Rigaud J.L. A systematic study of liposome and proteoliposomes reconstitution involving Bio-Bead mediated Triton X-100 removal. Biochim. Biophys. Acta. 1990;1025:179–190. doi: 10.1016/0005-2736(90)90096-7. [DOI] [PubMed] [Google Scholar]
  • 17.Bligh E.G., Dyer W.J. A rapid method of total lipid extraction and purification. Can. J. Med. Sci. 1959;37:911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  • 18.Kaplan R.S., Pedersen P.L. Sensitive protein assay in the presence of high levels of lipid. Methods Enzymol. 1989;172:393–399. doi: 10.1016/S0076-6879(89)72025-5. [DOI] [PubMed] [Google Scholar]
  • 19.Akashi K., Miyata H., Itoh H., Kinosita K. Preparation of giant liposomes in physiological conditions and their characterization under an optical microscope. Biophys. J. 1996;71:3242–3250. doi: 10.1016/S0006-3495(96)79517-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Dimova R., Aranda S., Bezlyepkina N., Nikolov V., Riske K.A., Lipowsky R. A practical guide to giant vesicles — Probing the membrane nanoregime via optical microscopy. J. Phys. Condens. Matter. 2006;18:S1151–S1176. doi: 10.1088/0953-8984/18/28/S04. [DOI] [PubMed] [Google Scholar]
  • 21.Taylor K.M.G., Morris R.M. Thermal analysis of phase transition behaviour in liposomes. Thermochim. Acta. 1994;248:289–301. doi: 10.1016/0040-6031(94)01884-J. [DOI] [Google Scholar]
  • 22.Yancey P.G., Rodrigueza W.V., Kilsdonk E.P.C., Stoudt G.W., Johnson W.J., Phillips M.C., Rothblat G.H. Ctellular cholesterol efflux mediated by cyclodextrins. J. Biol. Chem. 1996;271:16026–16034. doi: 10.1074/jbc.271.27.16026. [DOI] [PubMed] [Google Scholar]
  • 23.Eckford P.D.W., Sharom F.J. Interaction of the P-glycoprotein multidrug efflux pump with cholesterol: effects on ATPase activity, drug binding and transport. Biochemistry. 2008;47:13686–13698. doi: 10.1021/bi801409r. [DOI] [PubMed] [Google Scholar]
  • 24.Chang Q., Gummadi S.N., Menon A.K. Chemical modification identifies two population of glycerophospholipid flippase in rat liver ER. Biochemistry. 2004;43:10710–10718. doi: 10.1021/bi049063a. [DOI] [PubMed] [Google Scholar]
  • 25.Bishop R.W., Bell R.M. Assembly of the endoplasmic reticulum phospholipid bilayer: the phosphatidylcholine transporter. Cell. 1985;42:51–60. doi: 10.1016/S0092-8674(85)80100-8. [DOI] [PubMed] [Google Scholar]
  • 26.Vigh L., Escriba P.V., Sonnleitner A., Sonnleitner M., Piotto S., Marseca M., Horvath I., Harwood J.L. The significance of lipid composition for membrane activity: New concepts and ways of assessing function. Prog. Lipid Res. 2005;44:303–344. doi: 10.1016/j.plipres.2005.08.001. [DOI] [PubMed] [Google Scholar]
  • 27.Betts H., Moore I. Plant cell polarity: The Ins-and-outs of sterol transport. Curr. Biol. 2003;13:781–783. doi: 10.1016/j.cub.2003.09.023. [DOI] [PubMed] [Google Scholar]
  • 28.Moreau P., Hartmann M.A., Perret A.M., Sturbois-Balcerzak B., Cassagne C. Transport of sterols to the plasma membrane of leek seedlings. Plant. Physiol. 1998;117:931–937. doi: 10.1104/pp.117.3.931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Grebe M., Xu J., Möbius W., Ueda T., Nakano A., Geuze H.J., Rook M.B., Scheres B. Arabidopsis sterol endocytosis involves actin mediated trafficking via ARA6-positive early endosomes. Curr. Biol. 2003;13:1378–1387. doi: 10.1016/S0960-9822(03)00538-4. [DOI] [PubMed] [Google Scholar]
  • 30.Boutte Y., Grebe M. Cellular processes relying on sterol function in plants. Curr. Opin. Plant Biol. 2009;12:705–713. doi: 10.1016/j.pbi.2009.09.013. [DOI] [PubMed] [Google Scholar]
  • 31.Meer G.V., Voelker D.R., Feigenson G.W. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell. Biol. 2008;9:112–124. doi: 10.1038/nrm2330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Smith M.L., McConnell H.M. Pattern photobleaching of fluorescent lipid vesicles using polarized laser light. Biophys. J. 1981;3:139–146. doi: 10.1016/S0006-3495(81)84877-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.McMullen T.P.W., Vilcheze C., McElhaney R.N., Bittman R. Differential scanning calorimetric study of the effect of sterol side chain length and structure on dipalmitoylphosphatidylcholine thermotropic phase behaviour. Biophys. J. 1995;69:169–176. doi: 10.1016/S0006-3495(95)79887-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Zidovetzki R., Levitan I. Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies. Biochim. Biophys. Acta. 2007;1768:1311–1324. doi: 10.1016/j.bbamem.2007.03.026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Tieleman D.P., Marrink S.J. Lipids out of equilibrium: energetics of desorption and pore mediated flip-flop. J. Am. Chem. Soc. 2006;128:12462–12467. doi: 10.1021/ja0624321. [DOI] [PubMed] [Google Scholar]
  • 36.Gurtovenko A.A., Vattulainen I. Modulating the structure and properties of cell membranes: the molecular mechanism of action of dimethyl sulfoxide. J. Phys. Chem. B. 2007;111:13554–13559. doi: 10.1021/jp077094k. [DOI] [PubMed] [Google Scholar]
  • 37.Schroeder F., Frolov A., Schoer J., Gallegos A., Atshaves B.P., Stolowich N.J., Scott A.I., Kier A.B. In: Intracellular sterol binding proteins, cholesterol transport and membrane domains, in intracellular cholesterol trafficking. Chang T.Y., Freeman D.A., editors. Boston: Kluwer Academic Publishers; 1998. [Google Scholar]
  • 38.Stolowich N., Frolov A., Petrescu A.D., Scott A.I., Billheimeri J.T., Schroeder F. Holo-sterol carrier protein-2. J. Biol. Chem. 1999;274:35425–35433. doi: 10.1074/jbc.274.50.35425. [DOI] [PubMed] [Google Scholar]
  • 39.Schroeder F., Frolov A., Starodub O., Atshaves B.B., Russelli W., Petrescu A., Huang H., Gallegos A.M., McIntosh A., Tahotna D., Russelli D.H., Billheimer J.T., Baum C.L., Kier A.B. Pro-sterol carrier protein-2. J. Biol. Chem. 2000;275:25547–25555. doi: 10.1074/jbc.M000431200. [DOI] [PubMed] [Google Scholar]
  • 40.Avdulov N.A., Chochina S.V., Igbavboa U., Warden C.S., Schroeder F., Wood W.G. Lipid binding to sterol carrier protein-2 is inhibited by ethanol. Biochim. Biophys. Acta. 1999;1437:37–45. doi: 10.1016/s0005-2760(98)00178-7. [DOI] [PubMed] [Google Scholar]
  • 41.Serrero G., Frolov A., Schroeder F., Tanaka K., Gelhaar L. Adipose differentiation related protein: expression, purification of recombinant protein in Escherichia coli and characterization of its fatty acid binding properties. Biochim. Biophys. Acta. 2000;1488:245–254. doi: 10.1016/s1388-1981(00)00128-1. [DOI] [PubMed] [Google Scholar]
  • 42.Atshaves B.P., Starodub O., McIntosh A., Petrescu A., Roths J.B., Kier A.B., Schroeder F. Sterol carrier protein-2 alters high density lipoprotein-mediated cholesterol efflux. J. Biol. Chem. 2000;275:36852–36861. doi: 10.1074/jbc.M003434200. [DOI] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES