Abstract
A theoretical model of a two-component bilayer membrane was used in order to describe the influence of anisotropic membrane inclusions on shapes of membrane daughter micro and nano vesicles. It was shown that for weakly anisotropic inclusions the stable vesicle shapes are only slightly out-of-round. In contrast, for strongly anisotropic inclusions the stable vesicle shapes may significantly differ from spheres, i.e. they have a flattened oblate shape at small numbers of inclusions in the membrane, and an elongated cigar-like prolate shape at high numbers of inclusions in the vesicle membrane.
Key words: Bilayer membranes, Daughter vesicles, Anisotropic membrane inclusions
Full Text
The Full Text of this article is available as a PDF (558.0 KB).
References
- 1.Singer S.J., Nicholson G.L. The fluid mosaic model of the structure of cell membranes. Science. 1972;175:720–731. doi: 10.1126/science.175.4023.720. [DOI] [PubMed] [Google Scholar]
- 2.Israelachvili J.N. Intermolecular and surface forces. London: Academic Press Limited; 1997. [Google Scholar]
- 3.Fisicaro E. Gemini surfactants: Chemico-physical and biological properties. Cell. Mol. Biol. Lett. 1997;2:45–63. [Google Scholar]
- 4.Danino D., Talmon Y., Zana R. Vesicle-to-micelle transformation in systems containing dimeric surfaces. J. Coll. Inter. Sci. 1997;185:84–93. doi: 10.1006/jcis.1996.4545. [DOI] [PubMed] [Google Scholar]
- 5.Helfrich W. Elastic properties of lipid bilayers: Theory and possible experiments. Z. Naturforsch. 1973;28:693–703. doi: 10.1515/znc-1973-11-1209. [DOI] [PubMed] [Google Scholar]
- 6.Iglič A., Kralj-Iglič V. Planar Lipid Bilayers (BLMs) and Their Applications. In: Tien H.T., Ottova-Leitmannova A., editors. Membrane Science and Technology, Vol. 7. Amsterdam, New York: Elsevier Science B.V.; 2003. pp. 143–172. [Google Scholar]
- 7.Fournier J.B. Nontopological saddle-splay and curvature instabilities from anisotropic membrane inclusions. Phys. Rev. Lett. 1996;76:4436–4439. doi: 10.1103/PhysRevLett.76.4436. [DOI] [PubMed] [Google Scholar]
- 8.Hägerstrand H., Isoma B. Vesiculation induced by amphiphiles in erythrocytes. Biochim. Biophys. Acta. 1989;982:179–186. doi: 10.1016/0005-2736(89)90053-9. [DOI] [PubMed] [Google Scholar]
- 9.Hägerstrand H., Isoma B. Morphological characterization of exovesicles and endovesicles released from human erythrocytes following treatment with amphiphiles. Biochim. Biophys. Acta. 1992;1109:117–126. doi: 10.1016/0005-2736(92)90074-V. [DOI] [PubMed] [Google Scholar]
- 10.Staneva G., Seigneuret M., Koumanov K., Trugnan G., Angelova M.I. Vectorial budding of vesicles by asymmetrical enzymatic formation of ceramide in giant liposomes. Chem. Phys. Lipids. 2005;136:55–66. doi: 10.1016/j.chemphyslip.2005.03.007. [DOI] [PubMed] [Google Scholar]
- 11.Iglič A., Hägerstrand H. Amphiphile-induced spherical microexovesicle corresponds to an extreme local area difference between two monolayers of the membrane bilayer. Med. Biol. Eng. Comp. 1999;37:125–129. doi: 10.1007/BF02513278. [DOI] [PubMed] [Google Scholar]
- 12.Tsafrir, I., Caspi, Y., Guedeau-Boudeville, M.A., Arzi, T. and Stavans, J. Budding and tubulation in highly oblate vesicles by anchored amphiphilic molecules. Phys. Rev. Lett.91 (2003) 138102-1-4. [DOI] [PubMed]
- 13.Sjögren H., Ericsson C.A., Evenäs J., Ulvenlund S. Interaction between charged polypeptides and nonionic surfactant. Biophys. J. 2005;89:4219–4233. doi: 10.1529/biophysj.105.065342. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Kralj-Iglič V., Heinrich V., Svetina S., Žekš B. Free energy of closed membrane with anisotropic inclusions. Eur. Phys. J. B. 1999;10:5–8. doi: 10.1007/s100510050822. [DOI] [Google Scholar]
- 15.Kralj-Iglič V., Iglič A., Hägerstrand H., Peterlin P. Stable tubular microexovesicles of the erythrocyte membrane induced by dimeric amphiphiles. Phys. Rev. E. 2000;61:4230–4234. doi: 10.1103/PhysRevE.61.4230. [DOI] [PubMed] [Google Scholar]
- 16.Iglič A., Fošnarič M., Hägerstrand H., Kralj-Iglič V. Coupling between vesicle shape and the non-homogeneous lateral distribution of membrane constituents in Golgi bodies. FEBS Lett. 2004;574:9–12. doi: 10.1016/j.febslet.2004.07.085. [DOI] [PubMed] [Google Scholar]
- 17.Hägerstrand H., Kralj-Iglič V., Fošnarič M., Bobrowska-Hägerstrand M., Mrówczyńska L., Söderström T., Iglič A. Endovesicle formation and membrane perturbation induced by polyoxyethylene-glycolalkylethers in human erythrocytes. Biochim. Biophys. Acta. 2004;1665:191–200. doi: 10.1016/j.bbamem.2004.08.010. [DOI] [PubMed] [Google Scholar]
- 18.Markin V.S. Lateral organization of membranes and cell shapes. Biophys. J. 1981;36:1–19. doi: 10.1016/S0006-3495(81)84713-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Huttner W.B., Zimmerberg J. Implications of lipid microdomains for membrane curvature, budding and fission-commentary. Curr. Opin. Cell Biol. 2001;13:478–484. doi: 10.1016/S0955-0674(00)00239-8. [DOI] [PubMed] [Google Scholar]
- 20.Kralj-Iglič V., Iglič A., Hägerstrand H., Bobrowska-Hägerstrand M. Hypothesis of nanostructures of cell and phospholipid membranes as cell infrastructure. Med. Razgl. 2005;44:155–169. [Google Scholar]
- 21.Kralj-Iglič V., Svetina S., Žekš B. Shapes of bilayer vesicles with membrane embedded molecules. Eur. Biophys. J. 1996;24:311–321. doi: 10.1007/BF00180372. [DOI] [PubMed] [Google Scholar]
- 22.Hägerstrand H., Kralj-Iglič V., Bobrowska-Hägerstrand M., Iglič A. Membrane skeleton detachment in spherical and cylindrical microexovesicle. Bull. Math. Biol. 1999;61:1019–1030. doi: 10.1006/bulm.1999.0128. [DOI] [PubMed] [Google Scholar]
- 23.Seifert U. Configuration of fluid membranes and vesicles. Adv. Phys. 1997;46:13–137. doi: 10.1080/00018739700101488. [DOI] [Google Scholar]
- 24.Helfrich W. Deformation of lipid bilayer spheres by electric fields. Z. Naturforsch. 1974;29c:182–183. [PubMed] [Google Scholar]