Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2008 Jul 25;13(4):632–648. doi: 10.2478/s11658-008-0027-4

EHDS are serine phosphoproteins: EHD1 phosphorylation is enhanced by serum stimulation

Boris Fichtman 1, Liat Ravid 2, Debora Rapaport 3, Mia Horowitz 3,
PMCID: PMC6275761  PMID: 18661112

Abstract

Endocytic processes are mediated by multiple protein-protein interacting modules and regulated by phosphorylation and dephosphorylation. The Eps15 homology domain containing protein 1 (EHD1) has been implicated in regulating recycling of proteins, internalized both in clathrin-dependent and clathrin-independent endocytic pathways, from the recycling compartment to the plasma membrane. EHD1 was found in a complex with clathrin, adaptor protein complex-2 (AP-2) and insulin-like growth factor-1 receptor (IGF-1R), and was shown to interact with Rabenosyn-5, SNAP29, EHBP1 (EH domain binding protein 1) and syndapin I and II. In this study, we show that EHD1, like the other human EHDs, undergoes serine-phosphorylation. Our results also indicate that EHD1 is a serum-inducible serine-phosphoprotein and that PKC (protein kinase C) is one of its kinases. In addition, we show that inhibitors of clathrin-mediated endocytosis decrease EHD1 phosphorylation, while inhibitors of caveolinmediated endocytosis do not affect EHD1 phosphorylation. The results of experiments in which inhibitors of endocytosis were employed strongly suggest that EHD1 phosphorylation occurs between early endosomes and the endocytic recycling compartment.

Key words: Endocytosis, EHD1, EH domain, Phosphorylation

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Abbreviations used

AP-2

adaptor protein complex-2

BSA

bovine serum albumin

CHO

Chinese hamster ovary

cpm

counts per minute

dFCS

dialyzed FCS

DMEM

Dulbecco modified eagle medium

EHBP1

EH domain binding protein 1

FCS

fetal calf serum

FYVE

phenylalanine-tyrosine-valine-glutamate

IGF-1R

insulin-like growth factor-1 receptor

mDHFR

mouse dihydrofolate reductase

MEM-Alpha

minimal essential medium-alpha

ORF

open reading frame

PBS

phosphate buffered saline

PKC

protein kinase C

PVDF

polyvinidilen difluoride

TLC

thin-layer chromatography

TLE

thin-layer electrophoresis

References

  • 1.Wong W.T., Kraus M.H., Carlomagno F., Zelano A., Druck T., Croce C. M., Huebner K., Di Fiore P.P. The human eps15 gene, encoding a tyrosine kinase substrate, is conserved in evolution and maps to 1p31–p32. Oncogene. 1994;l9:1591–1597. [PubMed] [Google Scholar]
  • 2.Slepnev V.I., Ochoa G.C., Butler M.H., Grabs D., De Camilli P. Role of phosphorylation in regulation of the assembly of endocytic coat complexes. Science. 1998;281:821–824. doi: 10.1126/science.281.5378.821. [DOI] [PubMed] [Google Scholar]
  • 3.Di Fiore P.P., Pelicci P.G., Sorkin A. EH: a novel protein-protein interaction domain potentially involved in intracellular sorting. Trends Biochem. Sci. 1997;22:411–413. doi: 10.1016/S0968-0004(97)01127-4. [DOI] [PubMed] [Google Scholar]
  • 4.Santolini E., Salcini A.E., Kay B.K., Yamabhai M., Di Fiore P.P. The EH network. Exp. Cell Res. 1999;253:186–209. doi: 10.1006/excr.1999.4694. [DOI] [PubMed] [Google Scholar]
  • 5.Lee D.W., Zhao X., Scarselletta S., Schweinsberg P.J., Eisenberg E., Grant B.D., Greene L. E. ATP binding regulates oligomerization and endosome association of RME-1 family proteins. J. Biol. Chem. 2005;280:17213–17220. doi: 10.1074/jbc.M412751200. [DOI] [PubMed] [Google Scholar]
  • 6.Vetter I.R., Wittinghofer A. The guanine nucleotide-binding switch in three dimensions. Science. 2001;294:1299–1304. doi: 10.1126/science.1062023. [DOI] [PubMed] [Google Scholar]
  • 7.Mintz L., Galperin E., Pasmanik-Chor M., Tulzinsky S., Bromberg Y., Kozak C.A., Joyner A., Fein A., Horowitz M. EHD1-an EH-domaincontaining protein with a specific expression pattern. Genomics. 1999;59:66–76. doi: 10.1006/geno.1999.5800. [DOI] [PubMed] [Google Scholar]
  • 8.Pohl U., Smith J.S., Tachibana I., Ueki K., Lee H.K., Ramaswamy S., Wu Q., Mohrenweiser H.W., Jenkins R.B., Louis D.N. EHD2, EHD3, and EHD4 encode novel members of a highly conserved family of EH domain-containing proteins. Genomics. 2000;63:255–262. doi: 10.1006/geno.1999.6087. [DOI] [PubMed] [Google Scholar]
  • 9.Grant B., Zhang Y., Paupard M.C., Lin S.X., Hall D.H., Hirsh D. Evidence that RME-1, a conserved C. elegans EH-domain protein, functions in endocytic recycling. Nat. Cell Biol. 2001;3:573–579. doi: 10.1038/35078549. [DOI] [PubMed] [Google Scholar]
  • 10.Smith C.A., Dho S.E., Donaldson J., Tepass U., McGlade C.J. The Cell Fate Determinant Numb Interacts with EHD/Rme-1 Family Proteins and Has a Role in Endocytic Recycling. Mol. Biol. Cell. 2004;15:2698–3708. doi: 10.1091/mbc.E04-01-0026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Blume J.J., Halbach A., Behrendt D., Paulsson M., Plomann M. EHD proteins are associated with tubular and vesicular compartments and interact with specific phospholipids. Exp. Cell Res. 2007;313:219–231. doi: 10.1016/j.yexcr.2006.10.006. [DOI] [PubMed] [Google Scholar]
  • 12.Galperin E., Benjamin S., Rapaport D., Rotem-Yehudar R., Tolchinsky S., Horowitz M. EHD3: a protein that resides in recycling tubular and vesicular membrane structures and interacts with EHD1. Traffic. 2002;3:575–589. doi: 10.1034/j.1600-0854.2002.30807.x. [DOI] [PubMed] [Google Scholar]
  • 13.George M., Ying G., Rainey M.A., Solomon A., Parikh P.T., Gao Q., Band V., Band H. Shared as well as distinct roles of EHD proteins revealed by biochemical and functional comparisons in mammalian cells and C. elegans. BMC Cell Biol. 2007;8:3. doi: 10.1186/1471-2121-8-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Naslavsky N., Caplan S. C-terminal EH-domain-containing proteins: consensus for a role in endocytic trafficking, EH? J. Cell Sci. 2005;118:4093–4101. doi: 10.1242/jcs.02595. [DOI] [PubMed] [Google Scholar]
  • 15.Rapaport D., Auerbach W., Naslavsky N., Pasmanik-Chor M., Galperin E., Fein A., Caplan S., Joyner A.L., Horowitz M. Recycling to the plasma membrane is delayed in EHD1 knockout mice. Traffic. 2006;7:52–60. doi: 10.1111/j.1600-0854.2005.00359.x. [DOI] [PubMed] [Google Scholar]
  • 16.Guilherme A., Soriano N.A., Bose S., Holik J., Bose A., Pomerleau D.P., Furcinitti P., Leszyk J., Corvera S., Czech M.P. EHD2 and the novel EH domain binding protein EHBP1 couple endocytosis to the actin cytoskeleton. J. Biol. Chem. 2004;279:10593–10605. doi: 10.1074/jbc.M307702200. [DOI] [PubMed] [Google Scholar]
  • 17.Daumke O., Lundmark R., Vallis Y., Martens S., Butler P.J., McMahon H.T. Architectural and mechanistic insights into an EHD ATPase involved in membrane remodelling. Nature. 2007;449:923–927. doi: 10.1038/nature06173. [DOI] [PubMed] [Google Scholar]
  • 18.Naslavsky N., Rahajeng J., Sharma M., Jovic M., Caplan S. Interactions between EHD Proteins and Rab11-FIP2: A Role for EHD3 in Early Endosomal Transport. Mol. Biol. Cell. 2006;17:163–177. doi: 10.1091/mbc.E05-05-0466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Shao Y., Akmentin W., Toledo-Aral J.J., Rosenbaum J., Valdez G., Cabot J.B., Hilbush B.S., Halegoua S. Pincher, a pinocytic chaperone for nerve growth factor/TrkA signaling endosomes. J. Cell Biol. 2002;157:679–691. doi: 10.1083/jcb.200201063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Sharma M., Naslavsky N., Caplan S. A role for EHD4 in the regulation of early endosomal transport. Traffic. 2008;9:995–1018. doi: 10.1111/j.1600-0854.2008.00732.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Lin S.X., Grant B., Hirsh D., Maxfield F.R. Rme-1 regulates the distribution and function of the endocytic recycling compartment in mammalian cells. Nat. Cell Biol. 2001;3:567–572. doi: 10.1038/35078543. [DOI] [PubMed] [Google Scholar]
  • 22.Picciano J.A., Ameen N., Grant B., Bradbury N.A. Rme-1 regulates the recycling of the cystic fibrosis transmembrane conductance regulator. Am. J. Physiol. Cell Physiol. 2003;285:1009–1018. doi: 10.1152/ajpcell.00140.2003. [DOI] [PubMed] [Google Scholar]
  • 23.Guilherme A., Soriano N.A., Furcinitti P.S., Czech M.P. Role of EHD1 and EHBP1 in perinuclear sorting and insulin-regulated GLUT4 recycling in 3T3-L1 adipocytes. J. Biol. Chem. 2004;279:40062–40075. doi: 10.1074/jbc.M401918200. [DOI] [PubMed] [Google Scholar]
  • 24.Caplan S., Naslavsky N., Hartnell L.M., Lodge R., Polishchuk R.S., Donaldson J.G., Bonifacino J.S. A tubular EHD1-containing compartment involved in the recycling of major histocompatibility complex class I molecules to the plasma membrane. Embo J. 2002;21:2557–2567. doi: 10.1093/emboj/21.11.2557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Park M., Penick E.C., Edwards J.G., Kauer J.A., Ehlers M.D. Recycling endosomes supply AMPA receptors for LTP. Science. 2004;305:1972–1975. doi: 10.1126/science.1102026. [DOI] [PubMed] [Google Scholar]
  • 26.Rotem-Yehudar R., Galperin E., Horowitz M. Association of insulinlike growth factor 1 receptor with EHD1 and SNAP29. J. Biol. Chem. 2001;276:33054–33060. doi: 10.1074/jbc.M009913200. [DOI] [PubMed] [Google Scholar]
  • 27.Naslavsky N., Rahajeng J., Chenavas S., Sorgen P.L., Caplan S. EHD1 and Eps15 interact with phosphatidylinositols via their EH-domains. J. Biol. Chem. 2007;282:16612–16622. doi: 10.1074/jbc.M609493200. [DOI] [PubMed] [Google Scholar]
  • 28.Naslavsky N., Boehm M., Backlund P.S., Jr., Caplan S. Rabenosyn-5 and EHD1 interact and sequentially regulate protein recycling to the plasma membrane. Mol. Biol. Cell. 2004;15:2410–2422. doi: 10.1091/mbc.E03-10-0733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Braun A., Pinyol R., Dahlhaus R., Koch D., Fonarev P., Grant B.D., Kessels M.M., Qualmann B. EHD proteins associate with syndapin I and II and such interactions play a crucial role in endosomal recycling. Mol. Biol. Cell. 2005;16:3642–3658. doi: 10.1091/mbc.E05-01-0076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Xu Y., Shi H., Wei S., Heng Wong S., Hong W. Mutually exclusive interactions of EHD1 with GS32 and Syndapin II. Mol. Membr. Biol. 2004;21:269–277. doi: 10.1080/09687680410001716871. [DOI] [PubMed] [Google Scholar]
  • 31.Nielsen E., Christoforidis S., Uttenweiler-Joseph S., Miaczynska M., Dewitte F., Wilm M., Hoflack B., Zerial M. Rabenosyn-5, a novel Rab5 effector, is complexed with hVPS45 and recruited to endosomes through a FYVE finger domain. J. Cell Biol. 2000;151:601–612. doi: 10.1083/jcb.151.3.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Kessels M.M., Qualmann B. The syndapin protein family: linking membrane trafficking with the cytoskeleton. J. Cell Sci. 2004;117:3077–3086. doi: 10.1242/jcs.01290. [DOI] [PubMed] [Google Scholar]
  • 33.Cullis D.N., Philip B., Baleja J.D., Feig L.A. Rab11-FIP2, an adaptor protein connecting cellular components involved in internalization and recycling of epidermal growth factor receptors. J. Biol. Chem. 2002;277:49158–49166. doi: 10.1074/jbc.M206316200. [DOI] [PubMed] [Google Scholar]
  • 34.Steegmaier M., Yang B., Yoo J.S., Huang B., Shen M., Yu S., Luo Y., Scheller R.H. Three novel proteins of the syntaxin/SNAP-25 family. J. Biol. Chem. 1998;273:34171–34179. doi: 10.1074/jbc.273.51.34171. [DOI] [PubMed] [Google Scholar]
  • 35.Ricotta D., Conner S.D., Schmid S.L., von Figura K., Honing S. Phosphorylation of the AP2 mu subunit by AAK1 mediates high affinity binding to membrane protein sorting signals. J. Cell Biol. 2002;156:791–795. doi: 10.1083/jcb.200111068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Wilde A., Brodsky F.M. In vivo phosphorylation of adaptors regulates their interaction with clathrin. J. Cell Biol. 1996;135:635–645. doi: 10.1083/jcb.135.3.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Ihara Y., Yasuoka C., Kageyama K., Wada Y., Kondo T. Tyrosine phosphorylation of clathrin heavy chain under oxidative stress. Biochem. Biophys. Res. Commun. 2002;297:353–360. doi: 10.1016/S0006-291X(02)02195-2. [DOI] [PubMed] [Google Scholar]
  • 38.Confalonieri S., Salcini A.E., Puri C., Tacchetti C., Di Fiore P.P. Tyrosine phosphorylation of Eps15 is required for ligand-regulated, but not constitutive, endocytosis. J. Cell Biol. 2000;150:905–912. doi: 10.1083/jcb.150.4.905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Kamps M.P., Sefton B.M. Acid and base hydrolysis of phosphoproteins bound to immobilon facilitates analysis of phosphoamino acids in gelfractionated proteins. Anal. Biochem. 1989;176:22–27. doi: 10.1016/0003-2697(89)90266-2. [DOI] [PubMed] [Google Scholar]
  • 40.Boyle W.J., van der Geer P., Hunter T. Phosphopeptide mapping and phosphoamino acid analysis by two-dimensional separation on thin-layer cellulose plates. Methods Enzymol. 1991;201:110–149. doi: 10.1016/0076-6879(91)01013-R. [DOI] [PubMed] [Google Scholar]
  • 41.Lin F.T., Krueger K.M., Kendall H.E., Daaka Y., Fredericks Z.L., Pitcher J.A., Lefkowitz R.J. Clathrin-mediated endocytosis of the betaadrenergic receptor is regulated by phosphorylation/dephosphorylation of beta-arrestin1. J. Biol. Chem. 1997;272:31051–31057. doi: 10.1074/jbc.272.49.31051. [DOI] [PubMed] [Google Scholar]
  • 42.Simonsen A., Lippe R., Christoforidis S., Gaullier J.M., Brech A., Callaghan J., Toh B.H., Murphy C., Zerial M., Stenmark H. EEA1 links PI(3)K function to Rab5 regulation of endosome fusion. Nature. 1998;394:494–498. doi: 10.1038/28879. [DOI] [PubMed] [Google Scholar]
  • 43.Jones D.T., Ganeshaguru K., Anderson R.J., Jackson T.R., Bruckdorfer K.R., Low S.Y., Palmqvist L., Prentice H.G., Hoffbrand A.V., Mehta A.B., Wickremasinghe R.G. Albumin activates the AKT signaling pathway and protects B-chronic lymphocytic leukemia cells from chlorambucil-and radiation-induced apoptosis. Blood. 2003;101:3174–3180. doi: 10.1182/blood-2002-07-2143. [DOI] [PubMed] [Google Scholar]
  • 44.Heuser J.E., Anderson R.G. Hypertonic media inhibit receptormediated endocytosis by blocking clathrin-coated pit formation. J. Cell Biol. 1989;108:389–400. doi: 10.1083/jcb.108.2.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Phonphok Y., Rosenthal K.S. Stabilization of clathrin coated vesicles by amantadine, tromantadine and other hydrophobic amines. FEBS Lett. 1991;281:188–190. doi: 10.1016/0014-5793(91)80390-O. [DOI] [PubMed] [Google Scholar]
  • 46.Puri V., Watanabe R., Singh R.D., Dominguez M., Brown J.C., Wheatley C.L., Marks D.L., Pagano R.E. Clathrin-dependent and-independent internalization of plasma membrane sphingolipids initiates two Golgi targeting pathways. J. Cell Biol. 2001;154:535–547. doi: 10.1083/jcb.200102084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Arcaro A., Wymann M.P. Wortmannin is a potent phosphatidylinositol 3-kinase inhibitor: the role of phosphatidylinositol 3,4,5-trisphosphate in neutrophil responses. Biochem. J. 1993;296(Pt2):297–301. doi: 10.1042/bj2960297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Jones A.T., Clague M.J. Phosphatidylinositol 3-kinase activity is required for early endosome fusion. Biochem. J. 1995;311:31–34. doi: 10.1042/bj3110031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Li G., D’Souza-Schorey C., Barbieri M.A., Roberts R.L., Klippel A., Williams L.T., Stahl P.D. Evidence for phosphatidylinositol 3-kinase as a regulator of endocytosis via activation of Rab5. Proc. Natl. Acad. Sci. USA. 1995;92:10207–10211. doi: 10.1073/pnas.92.22.10207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Sheff D.R., Daro E.A., Hull M., Mellman I. The receptor recycling pathway contains two distinct populations of early endosomes with different sorting functions. J. Cell Biol. 1999;145:123–139. doi: 10.1083/jcb.145.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Welsh G.I., Griffiths M.R., Webster K.J., Page M.J., Tavare J.M. Proteome analysis of adipogenesis. Proteomics. 2004;4:1042–1051. doi: 10.1002/pmic.200300675. [DOI] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES