Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2012 Jan 27;17(2):196–205. doi: 10.2478/s11658-012-0002-y

The effect of hyperosmolar stimuli and cyclophosphamide on the culture of normal rat urothelial cells in vitro

Kajetan Juszczak 1,2,, Jolanta Kaszuba-Zwoińska 1, Paulina Chorobik 3, Agata Ziomber 1, Piotr Jan Thor 1
PMCID: PMC6275770  PMID: 22287017

Abstract

Highly concentrated urine may induce a harmful effect on the urinary bladder. Therefore, we considered osmolarity of the urine as a basic pathomechanism of mucosal damage. The influence of both cyclophosphamide (CYP) and hyperosmolar stimuli (HS) on the urothelium are not well described. The purpose was to evaluate the effect of CYP and HS on rat urothelial cultured cells (RUCC). 15 Wistar rats were used for RUCC preparation. RUCC were exposed to HS (2080 and 3222 mOsm/l NaCl) for 15 min and CYP (1 mg/ml) for 4 hrs. APC-labelled annexin V was used to quantitatively determine the percentage of apoptotic cells and propidium iodide (PI) as a standard flow cytometric viability probe to distinguish necrotic cells from viable ones. Annexin V-APC (+), annexin V-APC and PI (+), and PI (+) cells were analysed as apoptotic, dead, and necrotic cells, respectively. The results were presented in percentage values. The flow cytometric analysis was done on a FACSCalibur Flow Cytometer using Cell-Quest software. Treatment with 2080 and 3222 mOsm/l HS resulted in 23.7 ± 3.9% and 26.0 ± 1.5% apoptotic cells, respectively, 14.3 ± 1.4% and 19.4 ± 2.7% necrotic cells, respectively and 60.5 ± 1.4% and 48.6 ± 5.3% dead cells, respectively. The effect of CYP on RUCC was similar to the effect of HS. After CYP the apoptotic and necrotic cells were 23.1 ± 0.3% and 17.9 ± 7.4%, respectively. The percentage of dead cells was 57.7 ± 10.8%. CYP and HS induced apoptosis and necrosis in RUCC. 3222 mOsm/l HS had the most harmful effect based on the percentage of necrotic and apoptotic cells.

Key words: Urothelial cell, Culture, Cyclophosphamide, Hyperosmolarity, Bladder, Rat, Apoptosis, Necrosis, Overactive bladder

Full Text

The Full Text of this article is available as a PDF (386.2 KB).

Abbreviations used

CYP

cyclophosphamide

CGRP

calcitonin gene-related peptide

DO

detrusor overactivity

FBS

fetal bovine serum

GAG

glycosaminoglycans

HEPES

4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid

HS

hyperosmolar stimuli

LUTS

lower urinary tract symptoms

MEM

minimal essential medium

RUCC

rat urothelial cultured cells

TRPV1

transient receptor potential vanilloid subtype 1

TRPV4

transient receptor potential vanilloid subtype 4

TRPM8

transient receptor potential vanilloid subfamily M member 8

TRPA1

transient receptor potential ankyrin subtype 4

SP

substance P

References

  • 1.Martin S.J., Green D.R., Cotter T.G. Dicing with death: dissecting the components of the apoptosis machinery. Trends. Biochem. Sci. 1994;19:26–30. doi: 10.1016/0968-0004(94)90170-8. [DOI] [PubMed] [Google Scholar]
  • 2.Alberts, K., Johnson, A., Lewis, J., Raff, M. and Roberts, W.P. Programmed cell death eliminates unwanted cells in: Molecular Biology of the Cell (textbook) 5th ed., 2008, Garland Science p. 1115.
  • 3.Ferguson D.R. Urothelial function. BJU Int. 1999;84:235–242. doi: 10.1046/j.1464-410x.1999.00187.x. [DOI] [PubMed] [Google Scholar]
  • 4.Cockayne D.A., Hamilton S.G., Zhu Q.M., Dunn P.M., Zhong Y., Novakovic S., Malmberg A.B., Cain G., Berson A., Kassotakis L., Hedley L., Lachnit W.G., Burnstock G., McMahon S.B., Ford A.P. Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X3-deficient mice. Nature. 2000;407:1011–1015. doi: 10.1038/35039519. [DOI] [PubMed] [Google Scholar]
  • 5.Birder L.A., Kanai A.J., de Groat W.C., Kiss S., Nealen M.L., Burke N.E., Dineley K.E., Watkins S., Reynolds I.J., Caterina M.J. Vanilloid receptor expression suggests a sensory role for urinary bladder epithelial cells. Proc. Natl. Acad. Sci. USA. 2001;98:13396–13401. doi: 10.1073/pnas.231243698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Chopra B., Barrick S.R., Meyers S., Beckel J.M., Zeidel M.L., Ford A.P.D.W., de Groat W.C., Birder L.A. Expression and function of bradykinin B1 and B2 receptors in normal and inflamed rat urinary bladder urothelium. J. Physiol. 2005;562:859–871. doi: 10.1113/jphysiol.2004.071159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Szallasi A., Blumberg P.M. Vanilloid (Capsaicin) receptors and mechanisms. Pharmacol. Rev. 1999;51:159–212. [PubMed] [Google Scholar]
  • 8.Zhang Y.Y., Ludwikowski B., Hurst R., Frey P. Expansion and longterm culture of differentiated normal rat urothelial cells in vitro. In Vitro Cell. Dev. Biol. Anim. 2001;37:419–429. doi: 10.1290/1071-2690(2001)037<0419:EALTCO>2.0.CO;2. [DOI] [PubMed] [Google Scholar]
  • 9.Noguchi S., Yura Y., Sherwood E.R., Kakinuma H., Kashihara N., Oyasu R. Stimulation of stromal cell growth by normal rat urothelial cell derived epidermal growth factor. Lab. Invest. 1990;62:538–544. [PubMed] [Google Scholar]
  • 10.Garland A., Jordan J.E., Necheles J., Alger L.E., Scully M.M., Miller R.J., Ray D.W., White S.R., Solway J. Hypertonicity, but not hypothermia, elicits substance P release from rat C-fiber neurons in primary culture. J. Clin. Invest. 1995;95:2359–2366. doi: 10.1172/JCI117928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Juszczak K., Krolczyk G., Filipek M., Dobrowolski Z.F., Thor P.J. Animal models of overactive bladder: cyclophosphamide (CYP)-induced cystitis in rats. Fol. Med. Cracov. 2007;48:113–123. [PubMed] [Google Scholar]
  • 12.Juszczak K., Ziomber A., Wyczółkowski M., Thor P.J. Hyperosmolarity alters the micturition: The comparison of urinary bladder motor activity in hyperosmolar and cyclophosphamide-induced models of overactive bladder. Can. J. Physiol. Pharmacol. 2010;88:899–906. doi: 10.1139/y10-072. [DOI] [PubMed] [Google Scholar]
  • 13.Kulick L.J., Clemons D.J., Hall R.L., Koch M.A. Refinement of the urine concentration test in rats. Contemp. Top. Lab. Anim. Sci. 2005;44:46–49. [PubMed] [Google Scholar]
  • 14.Birder L.A., Apodaca G., de Groat W.C., Kanai A.J. Adrenergic- and capsaicin-evoked nitric oxide release from urothelium and afferent nerves in urinary bladder. Am. J. Physiol. Renal. Physiol. 1998;275:F226–F229. doi: 10.1152/ajprenal.1998.275.2.F226. [DOI] [PubMed] [Google Scholar]
  • 15.de Groat W.C. The urothelium in overactive bladder: passive bystander or active participant? Urology. 2004;64:7–11. doi: 10.1016/j.urology.2004.08.063. [DOI] [PubMed] [Google Scholar]
  • 16.Sun Y., Keay S., DeDeyne P., Chai T.C. Augmented stretch activated adenosine triphosphate release from bladder uroepithelial cells in patients with interstitial cystitis. J. Urol. 2001;166:1951–1956. [PubMed] [Google Scholar]
  • 17.Birder L.A., Kanai A.J., de Groat W.C., Kiss S., Nealen M.L., Burke N.E., Dineley K.E., Watkins S., Reynolds I.J., Caterina M.J. Vanilloid receptor expression suggests a sensory role for urinary bladder epithelial cells. Proc. Natl. Acad. Sci. USA. 2001;98:13396–13401. doi: 10.1073/pnas.231243698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Lewczyński D., Ginalski K. The interactome: predicting the proteinprotein interactions in cells. Cell. Mol. Biol. Lett. 2009;14:1–22. doi: 10.2478/s11658-008-0024-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Rolius R., Antoniou C., Nazarova L.A., Kim S.H., Cobb G., Gala P., Rajaram P., Li Q., Fung L.W.M. Inhibition of calpain but not caspase activity by spectrin fragments. Cell. Mol. Biol. Lett. 2010;15:395–405. doi: 10.2478/s11658-010-0015-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Urbanova M., Plzak J., Strnad H., Betka J. Circulating nucleic acids as a new diagnostic tool. Cell. Mol. Biol. Lett. 2010;15:242–259. doi: 10.2478/s11658-010-0004-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Philips F.S., Sternberg S.S., Cronin A.P., Vidal P.M. Cyclophosphamide and urinary bladder toxicity. Cancer Res. 1961;21:1577–1589. [PubMed] [Google Scholar]
  • 22.Locher G.W., Cooper E.H. Repair of rat urinary bladder epithelium following injury by cyclophosphamide. Invest. Urol. 1970;8:116–123. [PubMed] [Google Scholar]
  • 23.Romih R., Koprivec D., Martinic D.S., Jezernik K. Restoration of the rat urothelium after cyclophosphamide treatment. Cell. Biol. Int. 2001;25:531–537. doi: 10.1006/cbir.2000.0658. [DOI] [PubMed] [Google Scholar]
  • 24.Wyllie A.H., Kerr J.F.R., Currie A.R. Cell death: the significance of apoptosis. Int. Rev. Cytol. 1980;68:251–306. doi: 10.1016/s0074-7696(08)62312-8. [DOI] [PubMed] [Google Scholar]
  • 25.Duvall E., Wyllie A.H. Death and the cell. Immunol. Today. 1986;7:115–119. doi: 10.1016/0167-5699(86)90152-0. [DOI] [PubMed] [Google Scholar]
  • 26.Arends M.J., Wyllie A.H. Apoptosis: mechanisms and roles in pathology. Int. Rev. Exp. Pathol. 1991;32:223–254. doi: 10.1016/b978-0-12-364932-4.50010-1. [DOI] [PubMed] [Google Scholar]
  • 27.Kullmann F.A., Shah M.A., Birder L.A., de Groat W.C. Functional TRP and ASIC-like channels in cultured urothelial cells from the rat. Am. J. Physiol. Renal. Physiol. 2009;296:F892–F901. doi: 10.1152/ajprenal.90718.2008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Juszczak K., Ziomber A., Wyczółkowski M., Thor P.J. Urodynamic effects of the bladder C-fiber afferent activity modulation in chronic overactive bladder model rats. J. Physiol. Pharmacol. 2009;60:85–91. [PubMed] [Google Scholar]
  • 29.Juszczak K., Gil K., Wyczółkowski M., Thor P.J. Functional, histological structure and mastocytes numbers alterations in rat urinary bladders following acute and chronic cyclophosphamide treatment. J. Physiol. Pharmacol. 2010;61:477–482. [PubMed] [Google Scholar]
  • 30.Juszczak K., Wyczółkowski M., Thor P.J. Urodynamic evaluation of experimental rat models of urinary bladder dysfunction: a systematic review of the literature. Ann. Urol. 2011;1:1–13. [Google Scholar]
  • 31.Geppetti P., Nassini R., Materazzi S., Benemei S. The concept of neurogenic inflammation. BJU Int. 2008;101(Suppl.3):2–6. doi: 10.1111/j.1464-410X.2008.07493.x. [DOI] [PubMed] [Google Scholar]
  • 32.Gauruder-Burmester A., Popken G. Follow-up at 24 months after treatment of overactive bladder with 0.2% sodium chondroitin sulphate. Aktuelle Urol. 2009;40:355–359. doi: 10.1055/s-0029-1224600. [DOI] [PubMed] [Google Scholar]
  • 33.Yeh C.H., Chiang H.S., Chien C.T. Hyaluronic acid ameliorates bladder hyperactivity via the inhibition of H2O2-enhanced purinergic and muscarinic signalling in the rat. Neurourol. Urodyn. 2010;29:765–770. doi: 10.1002/nau.20830. [DOI] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES