Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2010 Mar 5;15(2):342–355. doi: 10.2478/s11658-010-0008-2

STAT3 knockdown by siRNA induces apoptosis in human cutaneous T-cell lymphoma line Hut78 via downregulation of Bcl-xL

Navin K Verma 1,, Anthony M Davies 1, Aideen Long 1, Dermot Kelleher 1, Yuri Volkov 1
PMCID: PMC6275771  PMID: 20213502

Abstract

Cutaneous T-cell lymphomas (CTCLs) are non-Hodgkin’s lymphomas resulting from clonal expansion and localization of malignant T-lymphocytes to the skin. CTCL cells have defective apoptosis. Signal transducers and activators of transcription (STAT) are a family of transcription factors known to play important roles in the development and progression of several human cancers by promoting cell proliferation and protecting against apoptosis. In this study, we investigated the specific role of STAT3, a major component of the STAT family, in growth and survival of human CTCL cell line Hut78. Western immunoblot analysis showed elevated expression of STAT3 and phospho-STAT3(Y705) in human CTCL cells as compared to freshly isolated peripheral blood lymphocytes (PBLs). Specific knockdown of STAT3 expression in Hut78 cells by RNA interference induced morphological and biochemical changes indicating apoptotic cell death. Moreover, STAT3 inhibition downregulated the expression of Bcl2 family of anti-apoptotic gene Bcl-xL. These observations suggest that STAT3 is required for the survival of CTCL cells and strongly indicate that targeting STAT3 using siRNA techniques may serve a novel therapeutic strategy for the treatment of CTCL.

Key words: Apoptosis, Cutaneous T-cell lymphoma (CTCL), siRNA, STAT3

Full Text

The Full Text of this article is available as a PDF (5.3 MB).

Abbreviations used

CTCL

cutaneous T-cell lymphoma

MF

mycosis fungoides

PBL

peripheral blood lymphocyte

siRNA

small interfering RNA

SS

Sézary syndrome

STAT

signal transducers and activators of transcription

TUNEL

terminal deoxynucleotidyl transferase dUTP nick end labeling

References

  • 1.Siegel R.S., Kuzel T.M. Cutaneous T-cell lymphoma/leukemia. Curr. Trends Options Oncol. 2000;1:43–50. doi: 10.1007/s11864-000-0014-0. [DOI] [PubMed] [Google Scholar]
  • 2.Kotz E.A., Anderson D., Thiers B.H. Cutaneous T-cell lymphoma. J. Eur. Acad. Dermatol. Venereol. 2003;17:131–137. doi: 10.1046/j.1468-3083.2003.00635.x. [DOI] [PubMed] [Google Scholar]
  • 3.Willemze R., Jaffe E.S., Burg G., Burg G., Cerroni L., Berti E., Swerdlow S.H., Ralfkiaer E., Chimenti S., Diaz-Perez J.L., Duncan L.M., Grange F., Harris N.L., Kempf W., Kerl H., Kurrer M., Knobler R., Pimpinelli N., Sander C., Santucci M., Sterry W., Vermeer M.H., Wechsler J., Whittaker S., Meijer C.J.L.M. WHO-EORTC classification for cutaneous lymphomas. Blood. 2005;105:3768–3785. doi: 10.1182/blood-2004-09-3502. [DOI] [PubMed] [Google Scholar]
  • 4.Neelis K.J., Schimmel E.C., Vermeer M.H., Senff N.J., Willemze R., Noordijk E.M. Low-dose palliative radiotherapy for cutaneous B- and T-cell lymphomas. Int. J. Rad. Oncol. Biol. Phys. 2009;74:154–158. doi: 10.1016/j.ijrobp.2008.06.1918. [DOI] [PubMed] [Google Scholar]
  • 5.Kim E.J., Hess S., Richardson S.K., Newton S., Showe L.C., Benoit B.M., Ubriani R., Vittorio C.C., Junkins-Hopkins J.M., Wysocka M., Rook A.H. Immunopathogenesis and therapy of cutaneous T cell lymphoma. J. Clin. Invest. 2005;115:798–812. doi: 10.1172/JCI24826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Diamandidou E., Cohen R.R., Kurzrock R. Mycosis fungoides and Sezary syndrome. Blood. 1996;88:2385–2409. [PubMed] [Google Scholar]
  • 7.Qin J.-Z., Dummer R., Burg G., Dobbeling U. Constitutive and interleukin-7/interleukin-15 stimulated DNA binding of Myc, Jun, and novel Myc-like proteins in cutaneous T-cell lymphoma cells. Blood. 1999;93:260–267. [PubMed] [Google Scholar]
  • 8.Kari L., Loboda A., Nebozhyn M., Rook A.H., Vonderheid E.C., Nichols C., Virok D., Chang C., Horng W.H., Johnston J., Wysocka M., Showe M.K., Showe L.C. Classification and prediction of survival in patients with the leukemic phase of cutaneous T cell lymphoma. J. Exp. Med. 2003;197:1477–1488. doi: 10.1084/jem.20021726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Duvic M., Cather J. Emerging new therapies for cutaneous T-cell lymphoma. Dermatol. Clin. 2000;18:147–156. doi: 10.1016/s0733-8635(05)70155-8. [DOI] [PubMed] [Google Scholar]
  • 10.Querfeld C., Rizvi M.A., Kuzel T.M., Guitart J., Rademaker A., Sabharwal S.S., Krett N.L., Rosen S.T. The selective protein kinase C beta inhibitor enzastaurin induces apoptosis in cutaneous T-cell lymphoma cell lines through the AKT pathway. J. Invest. Dermatol. 2006;126:1641–1647. doi: 10.1038/sj.jid.5700322. [DOI] [PubMed] [Google Scholar]
  • 11.Contassot E., French L.E. Targeting apoptosis defects in cutaneous T-cell lymphomas. J. Invest. Dermatol. 2009;129:1059–1061. doi: 10.1038/jid.2009.14. [DOI] [PubMed] [Google Scholar]
  • 12.Ni X., Zhang C., Talpur R., Duvic M. Resistance to activation-induced cell death and bystander cytotoxicity via the Fas/Fas ligand pathway are implicated in the pathogenesis of cutaneous T cell lymphomas. J. Invest. Dermatol. 2005;124:741–750. doi: 10.1111/j.0022-202X.2005.23657.x. [DOI] [PubMed] [Google Scholar]
  • 13.Wu J., Nihal M., Siddiqui J., Vonderheid E.C., Wood G.S. Low FAS/CD95 expression by CTCL correlates with reduced sensitivity to apoptosis that can be restored by FAS upregulation. J. Invest. Dermatol. 2009;129:1165–1173. doi: 10.1038/jid.2008.309. [DOI] [PubMed] [Google Scholar]
  • 14.Zhang C.L., Kamarasher J., Qin J.Z., Burg G., Dummer R., Dobbeling U. Expression of apoptosis regulators in cutaneous T-cell lymphomas. J. Pathol. 2003;200:249–254. doi: 10.1002/path.1341. [DOI] [PubMed] [Google Scholar]
  • 15.Takeda K., Akira S. STAT family of transcription factors in cytokinemediated biological responses. Cytokine Growth Factor Rev. 2000;11:199–207. doi: 10.1016/S1359-6101(00)00005-8. [DOI] [PubMed] [Google Scholar]
  • 16.Bromberg J., Darnell J.E., Jr. The role of STAT3 in transcriptional control and their impact on cellular function. Oncogene. 2000;19:2468–2473. doi: 10.1038/sj.onc.1203476. [DOI] [PubMed] [Google Scholar]
  • 17.Levy D.E., Lee C.K. What does Stat3 do? J. Clin. Invest. 2002;109:1143–1148. doi: 10.1172/JCI15650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Kortylewski M., Jove R., Yu H. Targeting STAT3 affects melanoma on multiple fronts. Cancer Metastasis Rev. 2005;24:315–327. doi: 10.1007/s10555-005-1580-1. [DOI] [PubMed] [Google Scholar]
  • 19.Turkson J. STAT proteins as novel targets for cancer drug discovery. Expert Opin. Ther. Targets. 2004;8:409–422. doi: 10.1517/14728222.8.5.409. [DOI] [PubMed] [Google Scholar]
  • 20.Sommer V.H., Clemmensen O.J., Nielsen O., Wasik M., Lovato P., Brender C., Eriksen K.W., Woetmann A., Kaestel C.G., Nissen M.H., Ropke C., Skov S., Ødum N. In vivo activation of STAT3 in cutaneous T-cell lymphoma. Evidence for an antiapoptotic function of STAT3. Leukemia. 2004;18:1288–1295. doi: 10.1038/sj.leu.2403385. [DOI] [PubMed] [Google Scholar]
  • 21.Nielsen M., Kaltoft K., Nordahl M., Ropke C., Geisler C., Mustelin T., Dobson P., Svejgaard A., Ødum N. Constitutive activation of a slowly migrating isoform of Stat3 in mycosis fungoides: tyrphostin AG490 inhibits Stat3 activation and growth of mycosis fungoides tumor cell lines. Proc. Natl. Acad. Sci. USA. 1997;94:6764–6769. doi: 10.1073/pnas.94.13.6764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Zhang Q., Raghunath P.N., Xue L., Majewski M., Carpentieri D.F., Ødum N., Morris S., Skorski T., Wasik M.A. Multilevel dysregulation of STAT3 activation in anaplastic lymphoma kinase-positive T/null-cell lymphoma. J. Immunol. 2002;168:466–474. doi: 10.4049/jimmunol.168.1.466. [DOI] [PubMed] [Google Scholar]
  • 23.Eriksen K.W., Kaltoft K., Mikkelsen G., Nielsen M., Zhang Q., Geisler C., Nissen M.H., Ropke C., Wasik M.A., Ødum N. Constitutive STAT3-activation in Sezary syndrome: tyrphostin AG490 inhibits STAT3-activation, interleukin-2 receptor expression and growth of leukemic Sezary cells. Leukemia. 2001;15:787–793. doi: 10.1038/sj.leu.2402093. [DOI] [PubMed] [Google Scholar]
  • 24.Michel L., Dupuy A., Jean-Louis F., Sors A., Poupon J., Viguier M., Musette P., Dubertret L., Degos L., Dombret H., Bachelez H. Arsenic trioxide induces apoptosis of cutaneous T cell lymphoma cells: evidence for a partially caspase-independent pathway and potentiation by ascorbic acid (vitamin C) J. Invest. Dermatol. 2003;121:881–893. doi: 10.1046/j.1523-1747.2003.12479.x. [DOI] [PubMed] [Google Scholar]
  • 25.Volkov Y., Long A., McGrath S., Eidhin D.Ni., Kelleher D. Crucial importance of PKC-β(I) in LFA-1-mediated locomotion of activated T cells. Nat. Immunol. 2001;2:508–514. doi: 10.1038/88700. [DOI] [PubMed] [Google Scholar]
  • 26.Verma N.K., Dempsey E., Conroy J., Olwell P., Mcelligott A.M., Davies A.M., Kelleher D., Butini S., Campiani G., Williams D.C., Zisterer D.M., Lawler M., Volkov Y. A new microtubule targeting compound PBOX-15 inhibits T-cell migration via post-translational modifications of tubulin. J. Mol. Med. 2008;86:457–469. doi: 10.1007/s00109-008-0312-8. [DOI] [PubMed] [Google Scholar]
  • 27.Verma N.K., Dourlat J., Davies A.M., Long A., Liu W.Q., Garbay C., Kelleher D., Volkov Y. STAT3-stathmin interactions control microtubule dynamics in migrating T-cells. J. Biol. Chem. 2009;284:12349–12362. doi: 10.1074/jbc.M807761200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Elbashir S.M., Harborth J., Lendeckel W., Yalcin A., Weber K., Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001;411:494–498. doi: 10.1038/35078107. [DOI] [PubMed] [Google Scholar]
  • 29.Konnikova L., Kotecki M., Kruger M.M., Cochran B. Knockdown of STAT3 expression by RNAi induces apoptosis in astrocytoma cells. BMC Cancer. 2003;3:23–32. doi: 10.1186/1471-2407-3-23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Gao L.F., Xu D.Q., Wen L.J., Zhang X.Y., Shao Y.T., Zhao X.J. Inhibition of STAT3 expression by siRNA suppresses growth and induces apoptosis in laryngeal cancer cells. Acta Pharmacol. Sin. 2005;26:377–383. doi: 10.1111/j.1745-7254.2005.00053.x. [DOI] [PubMed] [Google Scholar]
  • 31.Grandis J.R., Drenning S.D., Zeng Q., Watkins S.C., Melhem M.F., Endo S., Johnson D.E., Huang L., He Y., Kim J.D. Constitutive activation of Stat3 signaling abrogates apoptosis in squamous cell carcinogenesis in vivo. Proc. Natl. Acad. Sci. USA. 2000;97:4227–4232. doi: 10.1073/pnas.97.8.4227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Mora L.B., Buettner R., Seigne J., Diaz J., Ahmad N., Garcia R., Bowman T., Falcone R., Fairclough R., Cantor A., Muro-Cacho C., Livingston S., Karras J., Pow-Sang J., Jove R. Constitutive activation of Stat3 in human prostate tumors and cell lines: direct inhibition of Stat3 signaling induces apoptosis of prostate cancer cells. Cancer Res. 2002;62:6659–6666. [PubMed] [Google Scholar]
  • 33.Elmore S. Apoptosis: a review of programmed cell death. Toxicol. Pathol. 2007;35:495–516. doi: 10.1080/01926230701320337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Reed J.C. Bcl2 family proteins. Oncogene. 1998;17:3225–3236. doi: 10.1038/sj.onc.1202591. [DOI] [PubMed] [Google Scholar]
  • 35.Osella-Aate S., Zaccagna A., Savoia P., Quaglino P., Salomone B., Bernengo M.G. Expression of apoptosis markers on peripheral blood lymphocytes from patients with cutaneous T-cell lymphoma during extracorporeal photochemotherapy. J. Am. Acad. Dermatol. 2001;44:40–47. doi: 10.1067/mjd.2001.108376. [DOI] [PubMed] [Google Scholar]
  • 36.Yu H., Jove R. The STATs of cancer—new molecular targets come of age. Nat. Rev. Cancer. 2004;4:97–105. doi: 10.1038/nrc1275. [DOI] [PubMed] [Google Scholar]
  • 37.Alshamsan A., Hamdya S., Samuel J., El-Kadi A.O.S., Lavasanifar A., Uludag H. The induction of tumor apoptosis in B16 melanoma following STAT3 siRNA delivery with a lipid-substituted polyethylenimine. Biomaterials. 2010;31:1420–1428. doi: 10.1016/j.biomaterials.2009.11.003. [DOI] [PubMed] [Google Scholar]
  • 38.Yue P., Turkson J. Targeting STAT3 in cancer: how successful are we? Expert Opin. Investig. Drugs. 2009;18:45–56. doi: 10.1517/13543780802565791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Cejka D., Losert D., Wacheck V. Short interfering RNA (siRNA): tool or therapeutic? Clin. Sci. (Lond.) 2006;110:47–58. doi: 10.1042/CS20050162. [DOI] [PubMed] [Google Scholar]
  • 40.Grivennikov, S.I. and Karin, M. Dangerous liaisons: STAT3 and NF-κB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev. (2009) in press. DOI:10.1016/j.cytogfr.2009.11.005. [DOI] [PMC free article] [PubMed]
  • 41.Takeda K., Noguchi K., Shi W., Tanaka T., Matsumoto M., Yoshida N., Kishimoto T., Akira S. Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc. Natl. Acad. Sci. USA. 1997;94:3801–3804. doi: 10.1073/pnas.94.8.3801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.de la Iglesia N., Konopka G., Lim K.L., Nutt C.L., Bromberg J.F., Frank D.A., Mischel P.S., Louis D.N., Bonni A. Deregulation of a STAT3-interleukin 8 signaling pathway promotes human glioblastoma cell proliferation and invasiveness. J. Neurosci. 2008;28:5870–5878. doi: 10.1523/JNEUROSCI.5385-07.2008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Li S.D., Chen Y.C., Hackett M.J., Huang L. Tumor-targeted delivery of siRNA by self-assembled nanoparticles. Mol. Ther. 2008;1:163–169. doi: 10.1038/sj.mt.6300323. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES