Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2007 Feb 13;12(3):317. doi: 10.2478/s11658-007-0005-2

An autoradiographic study of cellular proliferaton, DNA synthesis and cell cycle variability in the rat liver caused by phenobarbital-induced oxidative stress: The protective role of melatonin

Gamal H El-Sokkary 1,
PMCID: PMC6275773  PMID: 17297560

Abstract

The protective effect of melatonin against phenobarbital-induced oxidative stress in the rat liver was measured based on lipid peroxidation levels (malondialedyde and 4-hydroxyalkenals). Cellular proliferation, DNA synthesis and cell cycle duration were quantitated by the incorporation of 3H-thymidine, detected by autoradiography, into newly synthesized DNA. Two experiments were carried out in this study, each on four equal-sized groups of male rats (control, melatonin [10 mg/kg], phenobabital [20 mg/kg] and phenobarbital plus melatonin). Experiment I was designed to study the proliferative activity and rate of DNA synthesis, and measure the levels of lipid peroxidation, while experiment II was for cell cycle time determination. Relative to the controls, the phenobarbital-treated rats showed a significant increase (P < 0.01) in the lipid peroxidation levels (30.7%), labelling index (69.4%) and rate of DNA synthesis (37.8%), and a decrease in the cell cycle time. Administering melatonin to the phenobarbital-treated rats significantly reduced (P < 0.01) the lipid peroxidation levels (23.5%), labelling index (38.2%) and rate of DNA synthesis (29.0%), and increased the cell cycle time. These results seem to indicate that the stimulatory effect of phenobarbital on the oxidized lipids, proliferative activity, kinetics of DNA synthesis and cell cycle time alteration in the liver may be one of the mechanisms by which the non-genotoxic mitogen induces its carcinogenic action. Furthermore, melatonin displayed powerful protection against the toxic effect of phenobarbital.

Key words: Phenobarbital, Melatonin, Lipid peroxidation, Cell proliferation, DNA synthesis, Cell cycle

Full Text

The Full Text of this article is available as a PDF (455.5 KB).

Abbreviations used

GC/N

grain count per labelled nucleus

4-HAD

4-hydroxyalkenals

LI

labelling index

LPO

lipid peroxidation

MDA

malondialdehyde

PB

phenobarbital

ROS

reactive oxygen species

References

  • 1.Peraino C., Fry R.J.M., Staffeldt E. Enhancement of spontaneous hepatic tumorigenesis in C3H mice by dietary Phenobarbital. J. Natl. Cancer Inst. 1973;51:1349–1350. doi: 10.1093/jnci/51.4.1349. [DOI] [PubMed] [Google Scholar]
  • 2.Clemmesen J., Hjalgrim-Jensen S. Is Phenobarbital carcinogenic? A follow-up of 8078 epileptics. Ecotoxicol. Environ. Safety. 1978;1:457–470. doi: 10.1016/0147-6513(78)90014-3. [DOI] [PubMed] [Google Scholar]
  • 3.Jirtle R.L., Meyer S.A., Brockenbrough J.S., 369, 369 Liver tumor promoter Phenobarbital: a biphasic modulator or hepatocyte proliferation. Prog. Clin. Biol. Res. 1991;369:209–216. [PubMed] [Google Scholar]
  • 4.Tsai W.H., DeAngelo A.B. Responsiveness hepatocytes from dichloroacetic acid or phenobarbital treated mice to growth factors in primary cultures. Cancer Lett. 1996;99:177–183. doi: 10.1016/0304-3835(95)04053-6. [DOI] [PubMed] [Google Scholar]
  • 5.Jones H.B., Clarke N.A., Barras N.C. Phenobarbital-induced hepatocellular proliferation: anti-bromodeoxyuridine and anti-proliferating cell nuclear antigen immunocytochemistry. J. Histochem. Cytochem. 1993;41:21–27. doi: 10.1177/41.1.8093255. [DOI] [PubMed] [Google Scholar]
  • 6.Peraino C., Fry R.J.M., Staffeldt E., Christopher J.P. Comparative enhancing effects of Phenobarbital, amobarbital, diphenylhydantoin and dichlorodiphenyl-trichloroethane on 2-acetylaminofluorene induced hepatic tumourigenesis in rat. Cancer Res. 1975;35:2884–2890. [PubMed] [Google Scholar]
  • 7.Shelby M.D., Zieger E. Activity of human carcinogens in the salmonella and rodent bone-marrow cytogenetics tests. Mutat. Res. 1990;234:257–261. doi: 10.1016/0165-1161(90)90022-g. [DOI] [PubMed] [Google Scholar]
  • 8.Butterworth, B.E., Popp, J.A., Conolly, R.B. and Goldsworthy, T.L. Chemically induced cell proliferation in carcinogenesis. in: Mechanisms of Carcinogenesis in Risk Identification. Scientific Publications (Vainio, H., Magee, P.N., McGregor, D.B.and McMichael, A.J. Eds.), Lyon, France, 1992, 279–305. [PubMed]
  • 9.Schulte-Hermann R., Bursch W., Grasl-Kraupp B., Torok L., Ellinger A., Mullauer L. Role of active cell death (apoptosis) in multi-stage carcinogenesis. Toxicol. Lett. 1995;82(83):143–148. doi: 10.1016/0378-4274(95)03550-8. [DOI] [PubMed] [Google Scholar]
  • 10.Butterworth B.E., Conolly R.B., Morgan K.T. A strategy for establishing mode of action of chemical carcinogens as a guide for approaches to risk assessments. Cancer Lett. 1995;93:129–146. doi: 10.1016/0304-3835(95)03794-W. [DOI] [PubMed] [Google Scholar]
  • 11.Melnick R., Huff J. Liver carcinogenesis is not a predicted outcome of chemically induced hepatocyte proliferation. Toxicol. Indust. Health. 1993;9:415–438. doi: 10.1177/074823379300900303. [DOI] [PubMed] [Google Scholar]
  • 12.Columbano A., Ledda-Columbano G., Coni P., Pichiri-Coni G., Curto M., Pani P. Chemically induced cell proliferation and carcinogenesis: Differential effect of compensatory cell proliferation and mitogen-induced direct hyperplasia on hepatocarcinogenesis in the rat. In: Butterworth B., Slaga T., Farland W., McClain M., editors. Chemically Induced Cell Proliferation: Implications for Risk Assessment. New York: Wiley-Liss; 1991. pp. 217–225. [PubMed] [Google Scholar]
  • 13.Bursch W., Fesus L., Schulte-Hermann R. Apoptosis (’Programmed’ cell death) and its relevance in liver injury and carcinogenesis. In: Dekant W., Neumann H., editors. Tissue-Specific Toxicity Biochemical Mechanisms. London: Academic Press; 1992. pp. 95–115. [Google Scholar]
  • 14.Goldsworthy T., Fransson-Steen R., Maronpot R. Importance of and approaches to quantification of hepatocyte apoptosis. Toxicol. Pathol. 1996;24:24–35. doi: 10.1177/019262339602400105. [DOI] [PubMed] [Google Scholar]
  • 15.Stark A.A., Russell J.J., Langenbach R., Pagano D.A., Zeiger E., Huberman E. Localization of oxidative damage by a glutathione-γ-glutamyl transpeptidase system in neoplastic lesions in sections of livers from carcinogen-treated rats. Carcinogenesis. 1994;15:343–348. doi: 10.1093/carcin/15.2.343. [DOI] [PubMed] [Google Scholar]
  • 16.Imaoka S., Osada M., Minamiyama Y., Yukimura T., Toyokuni S., Takemura S., Hiroi T., Funae Y. Role of Phenobarbital-induced cytochrome P450s as a source of active oxygen species in DNA-oxidation. Cancer Lett. 2004;203:117–125. doi: 10.1016/j.canlet.2003.09.009. [DOI] [PubMed] [Google Scholar]
  • 17.Diez-Fernandez C., Sanz N., Alvarez A.M., Wolf A., Cascales M. The effect of non-genotoxic carcinogens, phenobarbital and clofibrate, on the relationship between reactive oxygen species, antioxidant enzyme expression and apoptosis. Carcinogenesis. 1998;19:1715–1722. doi: 10.1093/carcin/19.10.1715. [DOI] [PubMed] [Google Scholar]
  • 18.Venditti R., Daniele C.M., Deleo T., DiMeo S. Effect of phenobarbital treatment on characteristics determining susceptibility to oxidants of homogenates, mitochondria and microsomes from rat liver. Cell Physiol. Biochem. 1998;8:328–338. doi: 10.1159/000016294. [DOI] [PubMed] [Google Scholar]
  • 19.Aniya Y., Shimoji M., Naito A. Increase in liver microsomal glutathione-S-transferase activity by phenobarbital treatment of rats: possible involvement of oxidative activation via cytochrome P450. Biochem. Pharmacol. 1993;46:1741–1747. doi: 10.1016/0006-2952(93)90578-K. [DOI] [PubMed] [Google Scholar]
  • 20.Saintot M., Astre C., Pujol H., Gerber M. Tumor progerssion and oxidant antioxidant status. Carcinogenesis. 1996;17:1267–1271. doi: 10.1093/carcin/17.6.1267. [DOI] [PubMed] [Google Scholar]
  • 21.Wolfle D., Marquardt H. Antioxidants inhibit the enhancement of malignant cell transformation induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Carcinogenesis. 1996;17:1273–1278. doi: 10.1093/carcin/17.6.1273. [DOI] [PubMed] [Google Scholar]
  • 22.Whisler R.L., Goyette M.A., Grants J.S., Newhouse Y.G. Sublethal levels of oxidant stress stimulate multiple serine/threonine kinases and suppress protein phosphatases in jurkat T cells. Arch. Biochem. Biophys. 1995;319:23–25. doi: 10.1006/abbi.1995.1263. [DOI] [PubMed] [Google Scholar]
  • 23.Kass G.E.N. Free radical induced changes in cell signal transduction. In: Wallace K.B., editor. Free radical Toxicology. Washington, DC: Taylor and Francis; 1997. pp. 349–374. [Google Scholar]
  • 24.Reiter R.J. Oxidative damage in the central nervous system: Protection by melatonin. Prog. Neurobiol. 1998;56:359–384. doi: 10.1016/S0301-0082(98)00052-5. [DOI] [PubMed] [Google Scholar]
  • 25.Reiter R.J. Melatonin: Lowering the high price of free radicals. News Physiol. Sci. 2000;15:246–250. doi: 10.1152/physiologyonline.2000.15.5.246. [DOI] [PubMed] [Google Scholar]
  • 26.El-Sokkary G.H. Melatonin protects against oxidative stress induced by the kidney arcinogen KBrO3. Neuroendocrinol. Lett. 2000;21:461–468. [PubMed] [Google Scholar]
  • 27.El-Sokkary G.H. Inhibition of 2-nitropropane-induced cellular proliferation, DNA synthesis and histopathological changes by melatonin. Neuroendocrinol. Lett. 2002;23:335–340. [PubMed] [Google Scholar]
  • 28.El-Sokkary G.H., Reiter R.J., Abdel Ghaffar S.Kh. Melatonin supplementation restores cellular proliferation and DNA synthesis in the splenic and thymic lymphocytes of old rats. Neuroendocrinol. Lett. 2003;24:215–223. [PubMed] [Google Scholar]
  • 29.El-Sokkary G.H., Abdel-Rahman G.H., Kamel E.S. Melatonin protects against lead-induced hepatic and renal toxicity in male rats. Toxicology. 2005;213:25–33. doi: 10.1016/j.tox.2005.05.003. [DOI] [PubMed] [Google Scholar]
  • 30.Abd-Elghaffar S., El-Sokkary G.H., Sharkawy A.A. Aluminium-induced neurotoxicity and oxidative damage in rabbits: Protective effect of melatonin. Neuroendocinol. Lett. 2005;26:609–616. [PubMed] [Google Scholar]
  • 31.Martinez-Cruz F., Osuna C., Guerrero J.M. Mitochondrial damage induced by fetal hyperphenylalaniemia in the rat brain and liver: Its prevention by melatonin, vitamin E and vitamin C. Neurosci. Lett. 2006;392:1–4. doi: 10.1016/j.neulet.2005.02.073. [DOI] [PubMed] [Google Scholar]
  • 32.Hamatani K., Kawahara A., Amano M. Quantitative study of deoxycytidine incorporation in large and small lymphocytes of the mouse. Cell Tissue Kinet. 1983;16:557–570. [PubMed] [Google Scholar]
  • 33.Sadava, D.E. Cell cycle. in: Cell Biology, Organelle Structure and Function. Jones and Bartlett Publishers, 1993, 442-496.
  • 34.Jirtle R.L., Meyer S.A. Liver tumor promotion: effect of phenobarbital on EGF and protein kinase C signal transduction and TGFß1 expression. Dig. Dis. Sci. 1991;36:659–668. doi: 10.1007/BF01297035. [DOI] [PubMed] [Google Scholar]
  • 35.Guppy M.J., Wilton J.C., Sharma R., Chipman J.K. Modulation of phenobarbitone induced loss of gap junctional intercellular communication in hepatocyte couplets. Carcinogenesis. 1994;15:1917–1921. doi: 10.1093/carcin/15.9.1917. [DOI] [PubMed] [Google Scholar]
  • 36.Bock K.W., Lipp H.P., Bock-Hennig B.S. Induction of drug-metabolizing enzymes by xenobiotics. Xenobiotica. 1990;20:1101–1111. doi: 10.3109/00498259009046831. [DOI] [PubMed] [Google Scholar]
  • 37.Murkofsky R.L., Glover S.E., Miller R.T., Popp J.A., Cattley R.C. Effect of regeneration and hyperplasia on levels of DNA base oxidation in rat liver. Cancer Lett. 1993;70:51–56. doi: 10.1016/0304-3835(93)90074-J. [DOI] [PubMed] [Google Scholar]
  • 38.Kinoshita A., Wanibuchi H., Imaoka S., Ogawa M., Masuda C., Morimura K., Funae Y., Fukushima S. Formation of 8-hydroxydeoxyguanosine and cell-cycle arrest in the rat liver via generation of oxidative stress by phenobarbital: association with expression profiles of p21 WAF1/Cip1, cyclin D1 and Ogg1. Carcinogenesis. 2002;23:341–349. doi: 10.1093/carcin/23.2.341. [DOI] [PubMed] [Google Scholar]
  • 39.Kaufmann W.K., Ririe D.G., Kaufman D.G. Phenobarbital-dependent proliferation of putative initiated rat hepatocytes. Carcinigenesis. 1988;9:779–782. doi: 10.1093/carcin/9.5.779. [DOI] [PubMed] [Google Scholar]
  • 40.Arora V.K., Bhatia A., Sood S.K. Synergistic promoter effect of diethylstilbesterol & phenobarbitone in diethylnitrosamine induced hepatic neoplasia in rats. Indian J. Med. Res. 1989;90:9–16. [PubMed] [Google Scholar]
  • 41.Weghorst C.M., Klaunig J.E. Phenobarbital promotion in diethylnitrosamine-initiated infant B6C3F1 mice. Influence of gender. Carcinogenesis. 1989;10:609–612. doi: 10.1093/carcin/10.3.609. [DOI] [PubMed] [Google Scholar]
  • 42.Debiec-Rychter M., Wang C.Y. Induction of urinary bladder of the F344 rat. Toxicol. Appl. Pharmacol. 1990;105:345–349. doi: 10.1016/0041-008X(90)90196-2. [DOI] [PubMed] [Google Scholar]
  • 43.Morsi G.A. Autoradiographic studies on the effect of sodium phenobarbital on the kinetics of DNA synthesis in the hepatocytes of male albino rat. Egypt. J. Histol. 1991;14:511–523. [Google Scholar]
  • 44.Gonzales J.A., Christensen J.G., Preston R.J., Goldsworthy T.L., Tlsty T.D., Fox T.R. Attenuation of G1 checkpoint function by the non-genotoxic carcinogen Phenobarbital. Carcinogenesis. 1998;19:1173–1183. doi: 10.1093/carcin/19.7.1173. [DOI] [PubMed] [Google Scholar]
  • 45.Hartwell L.H., Weinhert T.A. Checkpoints: Controls that ensure the order of cell cycle events. Science. 1989;246:629–633. doi: 10.1126/science.2683079. [DOI] [PubMed] [Google Scholar]
  • 46.Kaufmann W.K., Wilson S.R. G1 arrest during cell cycle dependent clastogenesis in UV-irradiated human fibroblasts. Mutat. Res. 1994;314:67–76. doi: 10.1016/0921-8777(94)90062-0. [DOI] [PubMed] [Google Scholar]
  • 47.Livingstone L.R., White A., Sprouse J., Livanos E., Jacks T., Tlsty T.D. Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell. 1992;70:923–935. doi: 10.1016/0092-8674(92)90243-6. [DOI] [PubMed] [Google Scholar]
  • 48.White A.E., Livanos E.M., Tlsty T.D. Differential disruption of genomic integrity and cell cycle regulation in normal human fibroblasts by the HPV oncoproteins. Genes Dev. 1994;8:666–677. doi: 10.1101/gad.8.6.666. [DOI] [PubMed] [Google Scholar]
  • 49.Hartwell L. Defects in a cell cycle checkpoint may be responsible for the genomic instability of cancer cells. Cell. 1992;71:543–546. doi: 10.1016/0092-8674(92)90586-2. [DOI] [PubMed] [Google Scholar]
  • 50.Tan D.X., Chen L.D., Poeggeler B., Manchester L.C., Reiter R.J. Melatonin: a potent, endogenous hydroxyl radical scavenger. Endocr. J. 1993;1:57–60. [Google Scholar]
  • 51.Reiter R.J., Tan D.X., Qi W., Manchester L.C., Karbownik M., Calvo J.R. Pharmacology and physiology of melatonin in reduction of oxidative stress in vivo. Biol. Signals Recept. 2000;9:160–171. doi: 10.1159/000014636. [DOI] [PubMed] [Google Scholar]
  • 52.Cardinali D.P., Borfman G. P., Liotta G., Perez Floret S., Albornoz L.E., Cutrera R.A., Batista J., Ortiga G.B. A multifactorial approach employing melatonin to accelerate resynchronization of sleep-wake cycle after a 12 timezone westerly transmeridian flight in elite soccer athletes. J. Pineal Res. 2002;32:41–46. doi: 10.1034/j.1600-079x.2002.10820.x. [DOI] [PubMed] [Google Scholar]
  • 53.Cardinali D.P. Clinical perspectives for the use of melatonin as a neuroprotective chronobiotic in Alzheimer’s disease. Aktual. Neurol. 2003;3:188–204. [Google Scholar]
  • 54.Blask D.E., Sauer L.A., Dauchy R.T. Melatonin as a chronobiotic/anticancer agent. Curr. Top. Med. Chem. 2002;2:113–132. doi: 10.2174/1568026023394407. [DOI] [PubMed] [Google Scholar]
  • 55.Cos S., Sanchez-Barcelo E.J. Melatonin inhibition of MCF-7 human breast cancer cells growth: influence of cell proliferation rate. Cancer Lett. 1995;93:207–212. doi: 10.1016/0304-3835(95)03811-A. [DOI] [PubMed] [Google Scholar]
  • 56.Persengiev S.P., Kyurkchiev S. Selective effect of melatonin on the proliferation of lymphoid cells. Int. J. Biochem. 1993;25:441–444. doi: 10.1016/0020-711X(93)90637-T. [DOI] [PubMed] [Google Scholar]
  • 57.Malamud D. In: The cell cycle and cancer. Baserga R., editor. New York: Cold Spring Harbor; 1971. pp. 132–141. [Google Scholar]
  • 58.Crespo D., Fernandez-Viadero C., Verduga R., Ovejero V., Cos S. Interaction between melatonin and estradiol on morphological and morphometric features of MCF-7 human breast cancer cells. J. Pineal Res. 1994;16:215–222. doi: 10.1111/j.1600-079X.1994.tb00105.x. [DOI] [PubMed] [Google Scholar]
  • 59.Jayat C., Ratinaud M.H. Cell cycle analysis by flow cytometry: Principles and Applications. Biol. Cell. 1993;78:15–25. doi: 10.1016/0248-4900(93)90110-Z. [DOI] [PubMed] [Google Scholar]
  • 60.Cos S., Blask D.E., Lemus-Wilson A., Hill A.B. Effects of melatonin on the cell cycle kinetics and estrogen rescue of MCF-7 human breast cancer cells in culture. J. Pineal Res. 1991;10:36–43. doi: 10.1111/j.1600-079X.1991.tb00007.x. [DOI] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES