Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2007 Jun 24;12(4):573–583. doi: 10.2478/s11658-007-0026-x

The differential expression of ribosomal 18S RNA paralog genes from the chaetognath Spadella cephaloptera

Roxane-Marie Barthélémy 1,, Michel Grino 2, Pierre Pontarotti 3, Jean-Paul Casanova 1, Eric Faure 1
PMCID: PMC6275777  PMID: 17588220

Abstract

Chaetognaths constitute a small marine phylum of approximately 120 species. Two classes of both 18S and 28S rRNA gene sequences have been evidenced in this phylum, even though significant intraindividual variation in the sequences of rRNA genes is unusual in animal genomes. These observations led to the hypothesis that this unusual genetic characteristic could play one or more physiological role(s). Using in situ hybridization on the frontal sections of the chaetognath Spadella cephaloptera, we found that the 18S Class I genes are expressed in the whole body, with a strong expression throughout the gut epithelium, whereas the expression of the 18S Class II genes is restricted to the oocytes. Our results could suggest that the paralog products of the 18S Class I genes are probably the “housekeeping” 18S rRNAs, whereas those of class II would only be essential in specific tissues. These results provide support for the idea that each type of 18S paralog is important for specific cellular functions and is under the control of selective factors.

Key words: 18S, Chaetognath, Spadella cephaloptera, In situ hybridization, Duplication, Expression pattern, rRNA paralogs

Full Text

The Full Text of this article is available as a PDF (557.8 KB).

Abbreviations used

EDTA

ethylene diamine tetra-acetic acid

mRNA

messenger ribonucleic acid

nt

nucleotide

OCT

optimal cutting temperature

PBS

phosphate buffered saline

RER

rough endoplasmic reticulum

rRNA

ribosomal ribonucleic acid

RT-PCR

reverse transcription-polymerase chain reaction

SSC

sodium chloride sodium citrate

tRNA

transfer ribonucleic acid

References

  • 1.Casanova J.-P. Chaetognatha. In: Boltovskoy D., editor. South Atlantic Zooplankton. Leiden: Backhuys Publishers; 1999. pp. 1353–1374. [Google Scholar]
  • 2.Feigenbaum D.L., Maris R.C. Feeding in chaetognatha. Oceanogr. Mar. Biol. Ann. Rev. 1984;22:343–392. [Google Scholar]
  • 3.Matus D.Q., Copley R.R., Dunn C.W., Hejnol A., Eccleston H., Halanych K.M., Martindale M.Q., Telford M.J. Broad taxon and gene sampling indicate that chaetognaths are protostomes. Curr. Biol. 2006;16:R575–576. doi: 10.1016/j.cub.2006.07.017. [DOI] [PubMed] [Google Scholar]
  • 4.Marletaz F., Martin E., Perez Y., Papillon D., Caubit X., Lowe C.J., Freeman B., Fasano L., Dossat C., Wincker P., Weissenbach J., Le Parco Y. Chaetognath phylogenomics: a protostome with deuterostome-like development. Curr. Biol. 2006;16:R577–R578. doi: 10.1016/j.cub.2006.07.016. [DOI] [PubMed] [Google Scholar]
  • 5.Casanova J.-P., Duvert M., Perez Y. Phylogenetic interest of the chaetognath model. Mésogée. 2001;59:27–31. [Google Scholar]
  • 6.Jean S., De Jong L., Moreau X. Chaetognaths: a useful model for studying heat shock proteins. Effect of wound healing. J. Exp. Marine Biol. Ecol. 2004;312:319–332. doi: 10.1016/j.jembe.2004.07.009. [DOI] [Google Scholar]
  • 7.Takada N., Goto T., Satoh N. Expression pattern of the Brachyury gene in the arrow worm Paraspadella gotoi (chaetognatha) Genesis. 2002;32:240–245. doi: 10.1002/gene.10077. [DOI] [PubMed] [Google Scholar]
  • 8.Goto T., Yoshida M. Growth and reproduction of the benthic arrowworm Paraspadella gotoi (Chateognatha) in laboratory culture. Invert. Reprod. Dev. 1997;32:201–207. [Google Scholar]
  • 9.Prokopowich C.D., Gregory T.R., Crease T.J. The correlation between rDNA copy number and genome size in eukaryotes. Genome. 2003;46:48–50. doi: 10.1139/g02-103. [DOI] [PubMed] [Google Scholar]
  • 10.Rooney A.P. Mechanisms underlying the evolution and maintenance of functionally heterogeneous 18S rRNA genes in apicomplexans. Mol. Biol. Evol. 2004;21:1704–1711. doi: 10.1093/molbev/msh178. [DOI] [PubMed] [Google Scholar]
  • 11.Ledee D.R., Seal D.V., Byers T.J. . Confirmatory evidence from 18S rRNA gene analysis for in vivo development of propamidine resistance in a temporal series of Acanthamoeba isolates from a patient. Antimicrob. Agents Chemother. 1998;42:2144–2145. doi: 10.1128/aac.42.8.2144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Stothard J.R., Frame I.A., Carrasco H.J., Miles M.A. Temperature gradient gel electrophoresis (TGGE) analysis of riboprints from Trypanosoma cruzi. Parasitology. 1998;117:249–253. doi: 10.1017/S0031182098002972. [DOI] [PubMed] [Google Scholar]
  • 13.Carranza S., Baguna J., Riutort M. Origin and evolution of paralogous rRNA gene clusters within the flatworm family Dugesiidae (Platyhelminthes, Tricladida) J. Mol. Evol. 1999;49:250–259. doi: 10.1007/PL00006547. [DOI] [PubMed] [Google Scholar]
  • 14.Bonnaud L., Saihi A., Boucher-Rodoni R. Are 28SrDNA and 18SrDNA informative for cephalopod phylogeny? Bull. Mar. 2003;71:197–208. [Google Scholar]
  • 15.Krieger J., Fuerst P.A. Characterization of nuclear 18S rRNA gene sequence diversity and expression in an individual lake sturgeon (Acipenser fulvescens) J. Appl. Ichthyol. 2004;20:433–439. doi: 10.1111/j.1439-0426.2004.00610.x. [DOI] [Google Scholar]
  • 16.Krieger J., Hett A.K., Fuerst P.A., Birstein V.J., Ludwig A. Unusual intraindividual variation of the nuclear 18S rRNA gene is widespread within the acipenseridae. J. Hered. 2006;97:218–225. doi: 10.1093/jhered/esj035. [DOI] [PubMed] [Google Scholar]
  • 17.Papillon D., Perez Y., Caubit X., Le Parco Y. Systematics of Chaetognatha under the light of molecular data, using duplicated ribosomal 18S DNA sequences. Mol. Phyl. Evol. 2006;38:621–634. doi: 10.1016/j.ympev.2005.12.004. [DOI] [PubMed] [Google Scholar]
  • 18.Telford M.J., Holland P.W.H. Evolution of 28S ribosomal DNA in Chaetognaths: duplicate genes and molecular phylogeny. J. Mol. Evol. 1997;44:135–144. doi: 10.1007/PL00006130. [DOI] [PubMed] [Google Scholar]
  • 19.Qari S.H., Goldman I.F., Pieniazek N.J., Collins W.E., Lal A.A. Blood and sporozoite stage-specific small subunit ribosomal RNA-encoding genes of the human malaria parasite Plasmodium vivax. Gene. 1994;150:43–49. doi: 10.1016/0378-1119(94)90855-9. [DOI] [PubMed] [Google Scholar]
  • 20.Thompson J., van Spaendonk R.M., Choudhuri R., Sinden R.E., Janse C.J., Waters A.P. Heterogeneous ribosome populations are present in Plasmodium berghei during development in its vector. Mol. Microbiol. 1999;31:253–360. doi: 10.1046/j.1365-2958.1999.01167.x. [DOI] [PubMed] [Google Scholar]
  • 21.Grino M., Zamora A.J. An in situ hybridisation histochemistry technique allowing simultaneous visualization by the use of confocal microscopy of three cellular mRNA species in individual neurons. J. Histochem. Cytochem. 1998;46:753–759. doi: 10.1177/002215549804600608. [DOI] [PubMed] [Google Scholar]
  • 22.Gutell R.R., Weibser B., Woese C.R., Noller H.F. Comparative anatomy of 16S-like ribosomal RNA. Prog. Nucleic. Acid. Res. Mol. Biol. 1985;32:155–216. doi: 10.1016/S0079-6603(08)60348-7. [DOI] [PubMed] [Google Scholar]
  • 23.Shinn G.L. Chaetognaths. In: Harrison F.W., Ruppert E.E., editors. Microscopic anatomy of invertebrates, Vol. 15, Hemichordates, Chaetognatha and the invertebrate chordates. New York: Wiley-Liss; 1997. pp. 103–220. [Google Scholar]
  • 24.Ghirardelli E. Some aspects of the biology of the Chaetognaths. Adv. Mar. Biol. 1968;6:271–375. [Google Scholar]
  • 25.Canipari R., Pietrolucci A., Mangia F. Increase of total protein synthesis during mouse oocyte growth. J. Reprod. Fertil. 1979;57:405–413. doi: 10.1530/jrf.0.0570405. [DOI] [PubMed] [Google Scholar]
  • 26.Mercereau-Puijalon O., Barale J.C., Bischoff E. Three multigene families in Plasmodium parasites: facts and questions. Int. J. Parasitol. 2002;32:1323–1344. doi: 10.1016/S0020-7519(02)00111-X. [DOI] [PubMed] [Google Scholar]
  • 27.Komiya H., Hasegawa M., Takemura S. Differentiation of oocyte-type and somatic-type 5S ribosomal-RNAs in animals. J. Biochem. 1986;100:369–374. doi: 10.1093/oxfordjournals.jbchem.a121723. [DOI] [PubMed] [Google Scholar]
  • 28.Paillisson A., Levasseur A., Gouret P., Callebaut I., Bontoux M., Pontarotti P., Monget P. Bromodomain testis-specific protein is expressed in mouse oocyte and evolves faster than its ubiquitously expressed paralogs BRD2,-3, and-4. Genomics. 2007;89:215–223. doi: 10.1016/j.ygeno.2006.09.002. [DOI] [PubMed] [Google Scholar]
  • 29.Yang J., Su A.I., Li W.H. Gene expression evolves faster in narrowly than in broadly expressed mammalian genes. Mol. Biol. Evol. 2005;22:2113–2118. doi: 10.1093/molbev/msi206. [DOI] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES