Abstract
Sequence Specific Amplification Polymorphisms (SSAP) were used to measure the distribution and structure of SIRE-1 retroelement populations in annual and perennial Glycine species. For SSAP analysis, primers corresponding to a region immediately upstream of the 3’LTR of the soybean retroelement SIRE-1 were chosen. Analysis reveals that SIRE-1 is present throughout the Glycine genus and shows that the annual species have similar SIRE-1 populations whilst the perennial species have much more distinct and diverse populations. The high number of species-specific subgroups suggest that SIRE-1 has been active and evolving independently in each species during the course of Glycine evolution.
Key words: Glycine, Retroelement, SSAP, phylogeny, SIRE-1, copia
Full Text
The Full Text of this article is available as a PDF (462.8 KB).
References
- 1.Doyle J.J., Doyle J.L., Rauscher J.T., Brown A.H.D. Diploid and polyploid reticulate evolution throughout the history of the perennial soybeans (Glycine subgenus Glycine) New Phytol. 2003;161:121–132. doi: 10.1046/j.1469-8137.2003.00949.x. [DOI] [Google Scholar]
- 2.Ahrent D.K., Caviness C.E. Natural cross-pollination of twelve soybean cultures in Arkansas. Crop Sci. 1994;34:376–378. doi: 10.2135/cropsci1994.0011183X003400020013x. [DOI] [Google Scholar]
- 3.Hymowitz T., Singh R.J., Kollipara K.P. The genomes of Glycine. Plant Breed. Rev. 1998;16:289–317. [Google Scholar]
- 4.Laten H.M. Phylogenetic evidence for Ty1-copia-like endogenous retroviruses in plant genomes. Genetica. 1999;107:87–93. doi: 10.1023/A:1003901009861. [DOI] [PubMed] [Google Scholar]
- 5.Laten H.M., Havecker E.R., Voytas D.F. SIRE-1, an endogenous retrovirus family from Glycine max, is highly homogeneous and evolutionarily young. Mol. Biol. Evol. 2003;20:1222–1230. doi: 10.1093/molbev/msg142. [DOI] [PubMed] [Google Scholar]
- 6.Gribbon B.M., Pearce S.R., Kalendar R., Schulman A., Paulin L., Jack P., Kumar A., Flavell A.J. Phylogeny and transpositional activity of Ty1-copia group retrotransposons in cereal genomes. Mol. Gen. Genet. 1999;261:883–891. doi: 10.1007/PL00008635. [DOI] [PubMed] [Google Scholar]
- 7.Pearce S.R., Knox M., Ellis T.H.N., Flavell A.J., Kumar A. Pea Ty1-copia group retrotransposons: Transpositional activity and use as molecular markers to study genetic diversity in Pisum. Mol. Gen. Genet. 2000;263:898–907. doi: 10.1007/s004380000257. [DOI] [PubMed] [Google Scholar]
- 8.Tam S.M., Mhiri C., Vogelaar A., Kerkveld M., Pearce S.R., Grandbastien M.-A. Comparative analyses of genetic diversities within tomato and pepper collections detected by retrotransposon-based SSAP, AFLP and SSR. Theor. Appl. Genet. 2005;110:819–831. doi: 10.1007/s00122-004-1837-z. [DOI] [PubMed] [Google Scholar]
- 9.Waugh R., McLean K., Flavell A.J., Pearce S.R., Kumar A., Thomas B.B.T., Powell W. Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence specific amplification polymorphisms (SSAP) Mol. Gen. Genet. 1997;253:687–694. doi: 10.1007/s004380050372. [DOI] [PubMed] [Google Scholar]
- 10.Pearce S.R., Stuart-Rogers C., Kumar A., Flavell A.J. Rapid isolation of plant Ty1-copia group retrotransposons LTR sequences for molecular marker studies. Plant J. 1999;19:1–7. doi: 10.1046/j.1365-313x.1999.00556.x. [DOI] [PubMed] [Google Scholar]
- 11.Nei M., Takezaki N. Estimation of genetic distances and phylogenetic trees from DNA analysis. Proc. 5th World Cong. Genet. Appl. Livestock Prod. 1983;21:405–412. [Google Scholar]
- 12.Liu K., Muse S.V. PowerMarker: Integrated analysis environment for genetic marker data. Bioinformatics. 2005;21:2128–2129. doi: 10.1093/bioinformatics/bti282. [DOI] [PubMed] [Google Scholar]
- 13.Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39:783–791. doi: 10.2307/2408678. [DOI] [PubMed] [Google Scholar]
- 14.Peterson-Burch B.D., Wright D.A., Laten H.M., Voytas D.F. Retroviruses in plants? Trends Genet. 2000;16:151–152. doi: 10.1016/S0168-9525(00)01981-8. [DOI] [PubMed] [Google Scholar]
