Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2010 Sep 17;15(4):651–664. doi: 10.2478/s11658-010-0034-0

Ribosomal DNA, tri- and bi-partite pericentromeres in the permanent translocation heterozygote Rhoeo spathacea

Hieronim Golczyk 1,, Robert Hasterok 2, Marek Szklarczyk 3
PMCID: PMC6275781  PMID: 20865365

Abstract

High- and low-stringency FISH and base-specific fluorescence were performed on the permanent translocation heterozygote Rhoeo spathacea (2n = 12). Our results indicate that 45S rDNA arrays, rDNA-related sequences and other GC-rich DNA fraction(s) are located within the pericentromeric regions of all twelve chromosomes, usually colocalizing with the chromomycin A3-positive bands. Homogenization of the pericentromeric regions appears to result from the concerted spread of GC-rich sequences, with differential amplification likely. We found new 5S rDNA patterns, which suggest a variability in the breakpoints and in the consequent chromosome reorganizations. It was found that the large 5S rDNA locus residing on each of the 8E and 9E arms consisted of two smaller loci. On each of the two chromosome arms 3b and 4b, in addition to the major subtelomeric 5S rDNA locus, a new minor locus was found interstitially about 40% along the arm length. The arrangement of cytotogenetic landmarks and chromosome arm measurements are discussed with regard to genome repatterning in Rhoeo.

Key words: Pericentromere, Permanent translocation heterozygosity, rDNA, Rhoeo

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Abbreviations used

CMA3+

chromomycin A3 positive

FISH

fluorescence in situ hybridization

NORs

nucleolus organizer regions

PTH

permanent translocation heterozygosity

rDNA

ribosomal DNA

WATs

whole arm translocations

References

  • 1.Cleland R.E. Oenothera. Cytogenetics and evolution. London and New York: Academic Press; 1972. [Google Scholar]
  • 2.Holsinger K.E., Ellstrand N.C. The evolution and ecology of permanent translocation heterozygotes. Am. Nat. 1984;124:48–71. doi: 10.1086/284251. [DOI] [Google Scholar]
  • 3.Golczyk H., Hasterok R., Joachimiak A.J. FISH-aimed karyotyping and characterization of Renner complexes in permanent heterozygote Rhoeo spathacea. Genome. 2005;48:145–153. doi: 10.1139/g04-093. [DOI] [PubMed] [Google Scholar]
  • 4.Golczyk H., Musial K., Rauwolf U., Meurer J., Herrmann R.G., Greiner S. Meiotic events in Oenothera - a non-standard pattern of chromosome behaviour. Genome. 2008;51:952–958. doi: 10.1139/G08-081. [DOI] [PubMed] [Google Scholar]
  • 5.Rauwolf U., Golczyk H., Meurer J., Herrmann R.G., Greiner S. Molecular marker systems for Oenothera genetics. Genetics. 2008;180:1289–1306. doi: 10.1534/genetics.108.091249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Levin D.A. The role of chromosomal change in plant evolution. New York: Oxford University Press; 2002. [Google Scholar]
  • 7.Sax K. Chromosome ring formation in Rhoeo discolor. Cytologia. 1931;3:36–53. [Google Scholar]
  • 8.Lin Y.J., Paddock E.F. Ring-position and frequency of adjacent distribution of meiotic chromosomes in Rhoeo spathacea. Am. J. Bot. 1973;60:685–690. doi: 10.2307/2441447. [DOI] [Google Scholar]
  • 9.Natarajan A.T., Natarajan S. The heterochromatin of Rhoeo discolor. Hereditas. 1972;72:323–330. doi: 10.1111/j.1601-5223.1972.tb01057.x. [DOI] [Google Scholar]
  • 10.Pettenati M.J. Giemsa C-banding of Rhoeo (Commelinaceae) Genetica. 1987;74:219–224. doi: 10.1007/BF00056117. [DOI] [Google Scholar]
  • 11.Golczyk H., Joachimiak A. Karyotype structure and interphase chromatin organization in Rhoeo spathacea (Sw.) Stearn (Commelinaceae) Acta Biol. Cracov. Ser. Bot. 1999;41:143–150. [Google Scholar]
  • 12.Carniel K. Enständige nucleolen und zahl der nucleolenchromosomen bei Rhoeo discolor. Öster. Bot. Z. 1960;107:403–408. doi: 10.1007/BF01289761. [DOI] [Google Scholar]
  • 13.Golczyk H., Joachimiak A. NORs in Rhoeo revisited. Caryologia. 2003;56:31–35. [Google Scholar]
  • 14.Golczyk H., Joachimiak A., Hasterok R. Pericentromeric GC-rich chromatin in Rhoeo. Evidence from soma and germ-line. Caryologia. 2008;61:388–391. [Google Scholar]
  • 15.Schweizer D., Ambros P.F. Chromosome banding. Meth. Mol. Biol. 1994;29:97–111. doi: 10.1385/0-89603-289-2:97. [DOI] [PubMed] [Google Scholar]
  • 16.Unfried I., Gruendler P. Nucleotide sequence of the 5.8S and 25S rRNA genes and the internal transcribed spacers from Arabidopsis thaliana. Nucleic Acids Res. 1990;18:4011. doi: 10.1093/nar/18.13.4011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Gerlach W.L., Dyer T.A. Sequence organization of the repeating units in the nucleus of wheat which contain 5S rRNA genes. Nucleic Acids Res. 1980;11:4851–4865. doi: 10.1093/nar/8.21.4851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Jenkins G., Hasterok R. BAC landing on chromosomes of Brachypodium distachyon for comparative genome alignment. Nat. Protoc. 2007;2:88–98. doi: 10.1038/nprot.2006.490. [DOI] [PubMed] [Google Scholar]
  • 19.UTHSCSA ImageTool v.3.0 (http://ddsdx.uthscsa.edu/dig/itdesc.html).
  • 20.Gross M.C., Feldberg E., Cella D.M., Schneider M.C., Schneider C.H., Porto J.I.R., Martins C. Intriguing evidence of translocations in Discus fish (Symphysodon, Cichlidae) and a report of the largest meiotic chromosomal chain observed in vertebrates. Heredity. 2009;102:435–441. doi: 10.1038/hdy.2009.3. [DOI] [PubMed] [Google Scholar]
  • 21.Bennetzen J.L. Transposable element contributions to plant gene and genome evolution. Plant Mol. Biol. 2000;42:251–269. doi: 10.1023/A:1006344508454. [DOI] [PubMed] [Google Scholar]
  • 22.Schubert I. Chromosome evolution. Curr. Opin. Plant Biol. 2007;10:109–115. doi: 10.1016/j.pbi.2007.01.001. [DOI] [PubMed] [Google Scholar]
  • 23.Kenton A., Davies A., Jones K. Identification of Renner complexes and duplications in permanent hybrids of Gibasis pulchella (Commelinaceae) Chromosoma. 1987;95:424–434. doi: 10.1007/BF00333994. [DOI] [Google Scholar]
  • 24.Mesquita D.R., Porto J.I.R., Feldberg E. Chromosomal variability in the wild ornamental species of Symphysodon (Perciformes: Cichlidae) from Amazon. Neotrop. Ichthyol. 2008;6:181–190. doi: 10.1590/S1679-62252008000200005. [DOI] [Google Scholar]
  • 25.Hunt D.R. Campelia, Rhoeo, Zebrina united with Tradescantia. Kew Bull. 1986;41:401–405. doi: 10.2307/4102948. [DOI] [Google Scholar]
  • 26.Darlington C.D. Chromosome behaviour and structural hybridity in the Tradescantiae. II. Jour. Genet. 1937;35:259–280. doi: 10.1007/BF02982353. [DOI] [Google Scholar]
  • 27.Sax K. Chromosome behaviour and nuclear development in Tradescantia. Genetics. 1937;22:523–533. doi: 10.1093/genetics/22.5.523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Swanson C.R. The distribution of inversions in Tradescantia. Genetics. 1940;25:438–465. doi: 10.1093/genetics/25.5.438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Coleman L.C. The relation of chromocentres to the differential segments in Rhoeo discolor Hance. Amer. J. Bot. 1941;28:742–748. doi: 10.2307/2436659. [DOI] [Google Scholar]
  • 30.Schubert I., Wobus U. In situ hybridization confirms jumping nucleolus organizing regions in Allium. Chromosoma. 1985;92:143–148. doi: 10.1007/BF00328466. [DOI] [Google Scholar]
  • 31.Cheung S.W., Sun L., Featherstone T. Molecular cytogenetic evidence to characterize breakpoint regions in Robertsonian translocations. Cytogenet. Cell Genet. 1990;54:97–102. doi: 10.1159/000132970. [DOI] [PubMed] [Google Scholar]
  • 32.Hall K.J., Parker J.S. Stable chromosome fission associated with rDNA mobility. Chromosome Res. 1995;3:417–422. doi: 10.1007/BF00713891. [DOI] [PubMed] [Google Scholar]
  • 33.Thomas H.M., Harper J.A., Morgan W.G. Gross chromosome rearrangements are occurring in an accession of the grass Lolium rigidum. Chromosome Res. 2001;9:585–590. doi: 10.1023/A:1012499303514. [DOI] [PubMed] [Google Scholar]
  • 34.Gernand D., Golczyk H., Rutten T., Ilnicki T., Houben A., Joachimiak A.J. Tissue culture triggers chromosome alterations, amplification and transposition of repeat sequences in Allium fistulosum. Genome. 2007;50:435–442. doi: 10.1139/G07-023. [DOI] [PubMed] [Google Scholar]
  • 35.Butler D.K. Ribosomal DNA is a site of chromosome breakage in aneuploid strains of Neurospora. Genetics. 1992;131:581–592. doi: 10.1093/genetics/131.3.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Tagashira N., Kondo K. Chromosome phylogeny of Zamia and Ceratozamia by means of Robertsonian changes detected by fluorescence in situ hybridization (FISH) technique of rDNA. Plant Syst. Evol. 2001;227:145–155. doi: 10.1007/s006060170045. [DOI] [Google Scholar]
  • 37.Moscone E.A., Samuel R., Schwarzacher T., Schweizer D., Pedrosa-Harand A. Complex rearrangements are involved in Cephalanthera (Orchidaceae) chromosome evolution. Chromosome Res. 2007;15:931–943. doi: 10.1007/s10577-007-1174-6. [DOI] [PubMed] [Google Scholar]
  • 38.Hirai H., Yamamoto M.T., Taylor R.W., Imai H.T. Genomic dispersion of 28S rDNA during karyotype evolution in the ant genus Myrmecia (Formicidae) Chromosoma. 1996;105:190–196. doi: 10.1007/BF02509500. [DOI] [PubMed] [Google Scholar]
  • 39.Bombarová M., Marec F., Nguyen P., Špakulová M. Divergent location of ribosomal genes in chromosomes of fish thornyheaded worms, Pomphorhynchus laevis and Pomphorhynchus tereticollis (Acanthocephala) Genetica. 2007;131:141–149. doi: 10.1007/s10709-006-9124-3. [DOI] [PubMed] [Google Scholar]
  • 40.Chung M.C., Lee Y.I., Cheng Y.Y., Chou Y.J., Lu C.F. Chromosomal polymorphism of ribosomal genes in the genus Oryza. Theor. Appl. Genet. 2008;116:745–753. doi: 10.1007/s00122-007-0705-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Nguyen P., Sahara K., Yoshido A., Marec F. Evolutionary dynamics of rDNA clusters on chromosomes of moths and butterflies (Lepidoptera) Genetica. 2010;138:343–354. doi: 10.1007/s10709-009-9424-5. [DOI] [PubMed] [Google Scholar]
  • 42.Gross M.C., Schneider C.H., Valente G.T., Porto J.I.R., Martins C., Feldberg E. Comparative cytogenetic analysis of the genus Symphysodon (Discus Fishes, Cichlidae): chromosomal characteristics of retrotransposons and minor ribosomal DNA. Cytogenet. Genome Res. 2009;127:43–53. doi: 10.1159/000279443. [DOI] [PubMed] [Google Scholar]
  • 43.Mieczkowski P.A., Lemoine F.J., Petes T.D. Recombination between retrotransposons as a source of chromosome rearrangements in the yeast Saccharomyces cerevisiae. DNA Repair. 2006;5:1010–1020. doi: 10.1016/j.dnarep.2006.05.027. [DOI] [PubMed] [Google Scholar]
  • 44.Dubcovsky J., Dvořák J. Ribosomal RNA multigene loci - nomads of the Triticeae genomes. Genetics. 1995;140:1367–1377. doi: 10.1093/genetics/140.4.1367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Cabrero J., Camacho J.P.M. Location and expression of ribosomal RNA genes in grasshoppers: abundance of silent and cryptic loci. Chromosome Res. 2008;16:595–607. doi: 10.1007/s10577-008-1214-x. [DOI] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES