Abstract
Erythrocytes are constantly exposed to ROS due to their function in the organism. High tension of oxygen, presence of hemoglobin iron and high concentration of polyunsaturated fatty acids in membrane make erythrocytes especially susceptible to oxidative stress. A comparison of the antioxidant activities of polyphenol-rich plant extracts containing hydrolysable tannins from sumac leaves (Rhus typhina L.) and condensed tannins from grape seeds (Vitis vinifera L.) showed that at the 5–50 μg/ml concentration range they reduced to the same extent hemolysis and glutathione, lipid and hemoglobin oxidation induced by erythrocyte treatment with 400 μM ONOO− or 1 mM HClO. However, extract (condensed tannins) from grape seeds in comparison with extract (hydrolysable tannins) from sumac leaves stabilized erythrocytes in hypotonic NaCl solutions weakly. Our data indicate that both hydrolysable and condensed tannins significantly decrease the fluidity of the surface of erythrocyte membranes but the effect of hydrolysable ones was more profound. In conclusion, our results indicate that extracts from sumac leaves (hydrolysable tannins) and grape seeds (condensed tannins) are very effective protectors against oxidative damage in erythrocytes.
Key words: Tannins, Erythrocytes, Oxidative stress, Peroxynitrite, Hypochlorous acid, Hemolysis, Fluorescence anisotropy
Full Text
The Full Text of this article is available as a PDF (526.7 KB).
Abbreviations used
- DPH
1,6-diphenyl-1,3,5-hexatriene
- GSH
reduced glutathione
- HClO
hypochlorous acid
- metHb
methemoglobin
- ONOO−
peroxynitrite
- TMA-DPH
1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene
Footnotes
Paper authored by participant of the international conference: 18th Meeting, European Association for Red Cell Research, Wrocław — Piechowice, Poland, May 12–15th, 2011. Publication cost was covered by the organizers of this meeting.
References
- 1.Martindale J.L., Holbrook N.J. Cellular response to oxidative stress: signaling for suicide and survival. J. Cell Physiol. 2002;192:1–15. doi: 10.1002/jcp.10119. [DOI] [PubMed] [Google Scholar]
- 2.Esteva S., Pedret R., Fort N., Torrella J.R., Pages T., Viscor G. Oxidative stress status in rats after intermittent exposure to hypobaric hypoxia. Wilderness Environ. Med. 2010;21:325–331. doi: 10.1016/j.wem.2010.09.004. [DOI] [PubMed] [Google Scholar]
- 3.Roitman E.V., Dement’eva I.I., Azizova O.A., Nikitina E.V., Gagaeva E.V., Lopukhin Iu.M. Changes in blood rheological properties and erythrocyte osmotic resistance in activation of free radical processes. Klin. Lab. Diagn. 2001;3:42–43. [PubMed] [Google Scholar]
- 4.Brzeszczynska J., Luciak M., Gwozdzinski K. Alterations of erythrocyte structure and cellular susceptibility in patient with chronic renal failure: effect of haemodialysis and oxidative stress. Free Radic. Res. 2008;42:40–48. doi: 10.1080/10715760701787693. [DOI] [PubMed] [Google Scholar]
- 5.Samukawa K., Suzuki Y., Ohkubo N., Aoto M., Sakanaka M., Mitsuda N. Protective effect of ginsenosides Rg(2) and Rh(1) on oxidation-induced impairment of erythrocyte membrane properties. Biorheology. 2008;45:689–700. [PubMed] [Google Scholar]
- 6.Hatherill J.R., Till G.O., Ward P.A. Mechanisms of oxidant-induced changes in erythrocytes. Agents Actions. 1991;32:351–358. doi: 10.1007/BF01980898. [DOI] [PubMed] [Google Scholar]
- 7.Nikolaidis M.G., Jamurtaz A.Z. Blood as a reactive species generator and redox status regulator during exercise. Arch. Biochem. Biophys. 2009;490:77–84. doi: 10.1016/j.abb.2009.08.015. [DOI] [PubMed] [Google Scholar]
- 8.Nagababu E., Mohanty J.G., Ghamidipaty S., Ostera G.R., Rifkind J.M. Role of the membrane in the formation of heme degradation products in red blood cells. Life Sci. 2010;86:133–138. doi: 10.1016/j.lfs.2009.11.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Kiefmann R., Rifkind J.M., Nagababu E., Bhattacharya J. Red blood cells induce hypoxic lung inflammation. Blood. 2008;111:5205–5214. doi: 10.1182/blood-2007-09-113902. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Lang F., Lang K.S., Lang P.A., Huber S.M., Wieder T. Osmotic shock-induced suicidal death of erythrocytes. Acta Physiol. (Oxf.) 2006;187:191–198. doi: 10.1111/j.1748-1716.2006.01564.x. [DOI] [PubMed] [Google Scholar]
- 11.Minetti M., Agati L., Malorni W. The microenvironment can shift erythrocytes from a friendly to a harmful behavior: Pathogenetic implications for vascular diseases. Cardiovasc. Res. 2007;75:21–28. doi: 10.1016/j.cardiores.2007.03.007. [DOI] [PubMed] [Google Scholar]
- 12.Minetti M., Pietraforte D., Straface E., Metere A., Matarrese P., Malorni W. Red blood cells as a model to differentiate between direct and indirect oxidation pathways of peroxynitrite. Methods Enzymol. 2008;440:253–272. doi: 10.1016/S0076-6879(07)00816-6. [DOI] [PubMed] [Google Scholar]
- 13.Haslam E. Natural polyphenols (vegetable tannins) as drugs: possible modes of action. J. Nat. Prod. 1996;59:205–215. doi: 10.1021/np960040+. [DOI] [PubMed] [Google Scholar]
- 14.Haslam E. Vegetable tannins — Lessons of a phytochemical lifetime. Phytochemistry. 2007;68:2713–2721. doi: 10.1016/j.phytochem.2007.09.009. [DOI] [PubMed] [Google Scholar]
- 15.Koleckar V., Kubikova K., Rehakova Z., Kuca K., Jun D., Jahodar L., Opletal L. Condensed and hydrosable tannins as antioxidants influencing the healt. Mini Rev. Med. Chem. 2008;8:436–447. doi: 10.2174/138955708784223486. [DOI] [PubMed] [Google Scholar]
- 16.Zhu Q.Y., Schramm D.D., Gross H.B., Holt R.R., Kim S.H., Yamaguchi T., Kwik-Uribe C.L., Keen C.L. Influence of cocoa flavanols and procyanidins on free radical-induced human erythrocyte hemolysis. Clin. Dev. Immunol. 2005;12:27–34. doi: 10.1080/17402520512331329514. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Sangeetha P., Balu M., Haripriya C., Pannerselvam C. Age associated changes in erythrocyte membrane surface change: Modulatory role of grape seed proanthocyanidins. Exp. Gerontol. 2005;40:820–828. doi: 10.1016/j.exger.2005.07.008. [DOI] [PubMed] [Google Scholar]
- 18.Carini M., Aldini G., Bombardelli E., Morazzoni P., Facino R.M. UVB-induced hemolysis of rat erythrocytes: Protective effect of procyanidins from grape seeds. Life Sci. 2000;67:1799–1814. doi: 10.1016/s0024-3205(00)00771-2. [DOI] [PubMed] [Google Scholar]
- 19.Fedeli D., Berrettini M., Gabryelak T., Falcioni G. The effect of some tannins on trout erythrocytes exposed to oxidative stress. Mutat. Res. 2004;563:89–96. doi: 10.1016/j.mrgentox.2004.06.008. [DOI] [PubMed] [Google Scholar]
- 20.Olchowik, E., Sciepuk, A., Mavlyanov, S., Abdulladjanova, N. and Zamaraeva, M. Antioxidant capacities of polyphenols from Sumac (Rhus typhina L.) leaves in protection of erythrocytes against oxidative damage. Biomed. Prev. Nutr. (2011), doi:10.1016/j.bionut.2011.06.008
- 21.Islambekov Sh.Yu., Mavlyanov S.M., Kamaev F.G., Ismailov A.I. Phenolic compounds of sumac. Chem. Nat. Comp. 1994;30:37–39. [Google Scholar]
- 22.Pirniyazov A.Zh., Abdulladzhanova N.G., Mavlyanov S.M., Kamaev F.G., Dalimov D.N. Polyphenols from Vitis vinifera seeds. Chem. Nat. Comp. 2003;39:349–354. [Google Scholar]
- 23.Soszyński M., Bartosz G. Effect of peroxynitrite on erythrocytes. Biochim. Biophys. Acta. 1996;1291:107–114. doi: 10.1016/0304-4165(96)00052-9. [DOI] [PubMed] [Google Scholar]
- 24.Yagi K., Rastogi R. Assay for lipid peroxides in animals tissues by thiobarbituric acid reaction. Annu. Rev. Biochem. 1979;95:351–358. doi: 10.1016/0003-2697(79)90738-3. [DOI] [PubMed] [Google Scholar]
- 25.Pietraforte D., Matarrese P., Straface E., Gambardella L., Metere A., Scorza G., Leto T.L., Malorni W., Minetti M. Two different pathways are involved in peroxynitrite-induced senescence and apoptosis of human erythrocytes. Free Radic. Biol. Med. 2007;42:202–214. doi: 10.1016/j.freeradbiomed.2006.10.035. [DOI] [PubMed] [Google Scholar]
- 26.Zavodnik L.B., Zavodnik I.B., Lapshyna E.A., Buko V.U., Bryszewska M.J. Hypochlorous acid-induced membrane pore formation in red blood cells. Bioelectrochemistry. 2002;58:157–161. doi: 10.1016/s1567-5394(02)00151-2. [DOI] [PubMed] [Google Scholar]
- 27.Ionov M., Gordiyenko N., Olchowik E., Baram N., Zijaev K., Salakhutdinov B., Bryszewska M., Zamaraeva M. The immobilization of gossypol derivative on N-polyvinylpyrrolidone increases its water solubility and modifies membrane-active properties. J. Med. Chem. 2009;52:4119–4125. doi: 10.1021/jm9002507. [DOI] [PubMed] [Google Scholar]
- 28.Salikhov, Sh.I., Mavlyanov, S.M., Abdulladjanova, N.G., Pirniyazov, A.J., Dalimov, D.N., Salakhutdinov, B.A. and Kurmukov A.G. Polyphenols of some tannin containing plants and creation on their base drug remedies. New Research on Biotechnology and Medicine. New York: Nova Science (2006) 109–117.
- 29.Amer J., Ghoti H., Rachmilewitz E., Koren A., Lenin C., Fibach E. Red blood cells, platelets and polymorphonuclear neutrophils of patients with sickle cell disease exhibit oxidative stress that can be ameliorated by antioxidants. Br. J. Haematol. 2006;132:108–113. doi: 10.1111/j.1365-2141.2005.05834.x. [DOI] [PubMed] [Google Scholar]
- 30.Aslan M., Freeman B.A. Redox-dependent impairment of vascular function in sickle cell disease. Free Radic. Biol. Med. 2007;43:1469–1483. doi: 10.1016/j.freeradbiomed.2007.08.014. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Pandey K.B., Rizvi S.I. Markers of oxidative stress in erythrocytes and plasma during aging in humans. Oxid. Med. Cell Longev. 2010;3:2–12. doi: 10.4161/oxim.3.1.10476. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Sola E., Vaya A., Martinez M., Moscardo A., Corella D., Santaolaria M. L., Espana F., Mijares A.H. Erythrocyte membrane phosphatidylserine exposure in obesity. Obesity (Silver Spring) 2008;17:318–322. doi: 10.1038/oby.2008.499. [DOI] [PubMed] [Google Scholar]
- 33.Hagerman A.E., Riedl K.M., Jones G.A., Sovik K.N., Ritchard N.T., Hartzfeld P.W., Riechel T.L. High molecular weight plant polyphenolics (tannins) as biological antioxidants. J. Agric. Food Chem. 1998;46:1887–1892. doi: 10.1021/jf970975b. [DOI] [PubMed] [Google Scholar]
- 34.Tarahovsky Y.S. Plant polyphenols in cell-cell interaction and communication. Plant Signal. Behav. 2008;3:609–611. doi: 10.4161/psb.3.8.6359. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.Scalbert A., Williamson G. Dietary intake and bioavailability of polyphenols. J. Nutr. 2000;130:2073–2085. doi: 10.1093/jn/130.8.2073S. [DOI] [PubMed] [Google Scholar]
- 36.Koren E., Kohen R., Ginsburg I. Polyphenols enhance total oxidant — scavenging capacities of human blood by binding to red blood cells. Exp. Biol. Med. (Maywood) 2010;235:689–699. doi: 10.1258/ebm.2010.009370. [DOI] [PubMed] [Google Scholar]
- 37.Pennathur S., Maitra D., Byun J., Slikovic I., Abdulhamid I., Saed G.M., Diamond M.P., Abu-Soud H.M. Potent antioxidative activity of lycopene: A potential role in scavenging hypochlorous acid. Free Radic. Biol. Med. 2010;49:205–213. doi: 10.1016/j.freeradbiomed.2010.04.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Zavodnik I.B., Lapshina E.A., Zavodnik L.B., Bartosz G., Soszynski M., Bryszewska M. Hypochlorous acid damages erythrocyte membrane proteins and alters lipid bilayer structure and fluidity. Free Radic. Biol. Med. 2001;30:363–369. doi: 10.1016/s0891-5849(00)00479-2. [DOI] [PubMed] [Google Scholar]
- 39.Robaszkiewicz A., Greig F.H., Pitt A.R., Spickett C.M., Bartosz G., Soszynski M. Effect of phosphatidylcholine chlorohydrins on human erythrocytes. Chem. Phys. Lipids. 2010;163:639–647. doi: 10.1016/j.chemphyslip.2010.05.201. [DOI] [PubMed] [Google Scholar]
- 40.Kleinbongard P., Schulz R., Rassaf T., Lauer T., Dejam A., Jax T., Kumara I., Gharini P., Kabanosa S., Ozüyaman B., Schnürch H.G., Gödecke A., Weber A.A., Roberek M., Roberek H., Bloch W., Rösen P., Kelm M. Red blood cells express a functional endothelial nitric oxide synthase. Blood. 2006;107:2943–2951. doi: 10.1182/blood-2005-10-3992. [DOI] [PubMed] [Google Scholar]
- 41.Starodubtseva M.N., Tattersall A.L., Kuznetsova T.G., Yegorenkov N.I., Ellory J.C. Structural and functional changes in the membrane and membrane skeleton of red blood cells induced by peroxynitrite. Bioelectrochemistry. 2008;73:155–162. doi: 10.1016/j.bioelechem.2008.01.008. [DOI] [PubMed] [Google Scholar]
- 42.Rubbo H., Trostchansky A., O’Donnell V.B. Peroxynitrite-mediated lipid oxidation and nitration: mechanisms and consequences. Arch. Biochem. Biophys. 2009;15:167–172. doi: 10.1016/j.abb.2008.11.007. [DOI] [PubMed] [Google Scholar]
- 43.Balavoine G.A., Geletti Y.V. Peroxynitrite scavenging by different antioxidants. Part I: Convenient assay. Nitric Oxide. 1999;3:40–54. doi: 10.1006/niox.1999.0206. [DOI] [PubMed] [Google Scholar]
- 44.Tsuda T., Kato Y., Osawa T. Mechanism for peroxynitrite scavenging activity by anthocyanins. FEBS Lett. 2000;484:207–210. doi: 10.1016/s0014-5793(00)02150-5. [DOI] [PubMed] [Google Scholar]
- 45.Marzouk M.S., Moharram F.A., Mohamed M.A., Gama-Eldeen A.M., Aboutabl E.A. Anticancer and antioxidant tannins from Pimenta dioica leaves. Z. Naturforsch. C. 2007;62:526–536. doi: 10.1515/znc-2007-7-811. [DOI] [PubMed] [Google Scholar]
- 46.Romero N., Denicola A., Radi R. Red blood cells in the metabolism of nitric oxide-derived peroxynitrite. IUBMB Life. 2006;58:572–580. doi: 10.1080/15216540600936549. [DOI] [PubMed] [Google Scholar]
- 47.Hapner C.D., Deuster P., Chen Y. Inhibition of oxidative hemolysis by quercetin, but not other antioxidants. Chem. Biol. Interact. 2010;186:275–279. doi: 10.1016/j.cbi.2010.05.010. [DOI] [PubMed] [Google Scholar]
- 48.Solarska K., Lewińska A., Karowicz-Bilińska A., Bartosz G. The antioxidant properties of carnitine in vitro. Cell. Mol. Biol. Lett. 2010;15:90–97. doi: 10.2478/s11658-009-0036-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.Verstraeten S.V., Oteiza P.I., Fraga C.G. Membrane effects of cocoa procyanidins in liposomes and Jurkat T cells. Biol. Res. 2004;37:293–300. doi: 10.4067/s0716-97602004000200016. [DOI] [PubMed] [Google Scholar]
- 50.Labieniec M., Gabryelak T. Effects of tannins on Chinese hamster cell line B14. Mutat. Res. 2003;539:127–135. doi: 10.1016/s1383-5718(03)00161-x. [DOI] [PubMed] [Google Scholar]