Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2007 Jul 3;12(4):584–594. doi: 10.2478/s11658-007-0029-7

The complete structure of the cucumber (Cucumis sativus L.) chloroplast genome: Its composition and comparative analysis

Wojciech Pląder 1,, Yasushi Yukawa 2, Masahiro Sugiura 2, Stefan Malepszy 1
PMCID: PMC6275786  PMID: 17607527

Abstract

The complete nucleotide sequence of the cucumber (C. sativus L. var. Borszczagowski) chloroplast genome has been determined. The genome is composed of 155,293 bp containing a pair of inverted repeats of 25,191 bp, which are separated by two single-copy regions, a small 18,222-bp one and a large 86,688-bp one. The chloroplast genome of cucumber contains 130 known genes, including 89 protein-coding genes, 8 ribosomal RNA genes (4 rRNA species), and 37 tRNA genes (30 tRNA species), with 18 of them located in the inverted repeat region. Of these genes, 16 contain one intron, and two genes and one ycf contain 2 introns. Twenty-one small inversions that form stem-loop structures, ranging from 18 to 49 bp, have been identified. Eight of them show similarity to those of other species, while eight seem to be cucumber specific. Detailed comparisons of ycf2 and ycf15, and the overall structure to other chloroplast genomes were performed.

Key words: Organelle, Gene order

Full Text

The Full Text of this article is available as a PDF (548.1 KB).

Abbreviations used

cpDNA

chloroplast DNA

IR

inverted repeat

JLA

junction IRA/LSC

JLB

junction IRB/LSC

JSA

junction IRA/SSC

JSB

junction IRB/SSC

LSC

large single copy

PCR

polymerase chain reaction

rRNA

ribosomal RNA

SSC

small single copy

tRNA

transport RNA

References

  • 1.Havey M.J., Lilly J.W., Bohanec B., Bartoszewski G., Malepszy S. Cucumber: A model angiosperm for mitochondrial transformation. J. Appl. Genet. 2002;43:1–17. [PubMed] [Google Scholar]
  • 2.Kolodner R., Tewari K. Molecular size and conformation of chloroplast deoxyrybonucleic acid from pea leaves. J. Biol. Chem. 1972;247:6355–6364. [PubMed] [Google Scholar]
  • 3.Kolodner R., Tewari K. Inverted repeats in chloroplast DNA from higher plants. Proc. Natl. Acad. Sci. USA. 1979;76:41–45. doi: 10.1073/pnas.76.1.41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Deng X.W., Wing R.A., Gruissem A. The chloroplast genome exists in multimeric forms. Proc. Natl. Acad. Sci. USA. 1989;86:4156–4160. doi: 10.1073/pnas.86.11.4156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Lilly J.W., Havey M.J., Jackson S.A., Jiang J. Cytogenomic analyses reveal the structural plasticity of the chloroplast genome in higher plants. Plant Cell. 2001;13:245–254. doi: 10.1105/tpc.13.2.245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Hoshi Y., Plader W., Malepszy S. New C-banding pattern for chromosome identification in cucumber (Cucumis sativus L.) Plant Breed. 1998;117:77–82. doi: 10.1111/j.1439-0523.1998.tb01452.x. [DOI] [Google Scholar]
  • 7.De Nisi P., Zocchi G. Phosphoenolpyruvate carboxylase in cucumber (Cucumis sativus L.) roots under iron deficiency: activity and kinetic characterization. J. Exp. Biol. 2000;51:1903–1909. doi: 10.1093/jexbot/51.352.1903. [DOI] [PubMed] [Google Scholar]
  • 8.Hirano T., Kiyota M., Aiga I. Physical effects of dust on leaf physiology of cucumber and kidney bean plants. Environ. Pollut. 1995;89:255–261. doi: 10.1016/0269-7491(94)00075-O. [DOI] [PubMed] [Google Scholar]
  • 9.Burza W., Malepszy S. Direct plant regeneration from leaf explants in cucumber (C. sativus sativus L.) is free of stable genetic variation. Plant Breed. 1995;114:341–345. doi: 10.1111/j.1439-0523.1995.tb01246.x. [DOI] [Google Scholar]
  • 10.Wróblewski T., Filipecki M.K., Malepszy S. Factors influencing cucumber (C. sativus sativus L.) somatic embryogenesis. I. The crucial role of pH and nitrogen in suspension culture. Acta Soc. Bot. Pol. 1995;64:223–231. [Google Scholar]
  • 11.Burza W., Malepszy S. In vitro culture of C.sativus sativus L. XVIII. Plants from protoplasts through direct somatic embryogenesis. Plant Cell Tissue Organ Cult. 1995;41:259–266. doi: 10.1007/BF00045090. [DOI] [Google Scholar]
  • 12.Yin Z., Malepszy S. The transgenes are expressed with different level in plants. Biotechnologia. 2003;2:236–260. [Google Scholar]
  • 13.Yin Z., Plader W., Malepszy S. Transgene inheritance in plants. J. Appl. Genet. 2004;45:127–144. [PubMed] [Google Scholar]
  • 14.Havey M.J., Lilly J.W., Bohanec B., Bartoszewski G., Malepszy S. Cucumber: a model angiosperm for mitochondrial transformation. J. Appl. Genet. 2002;43:1–17. [PubMed] [Google Scholar]
  • 15.Palmer J.D. Physical and gene mapping of chloroplast DNA from Atriplex triangularis and C. sativus sativa. Nucleic Acid Res. 1982;10:1593–1605. doi: 10.1093/nar/10.5.1593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Kim J.S., Jung J.D., Lee J.A., Park H.W., Oh K.H., Jeong W.J., Choi D.W., Liu J.R., Cho K.Y. Complete sequence and organization of the cucumber (C. sativus L. cv. Baekmibaekdadagi) chloroplast genome. Plant Cell. Rep. 2006;25:334–340. doi: 10.1007/s00299-005-0097-y. [DOI] [PubMed] [Google Scholar]
  • 17.Cheng M.C., Wu S.P., Chen L.F., Chen S.C. Identification and purification of a spinach chloroplast DNA-binding protein that interacts specifically with the plastid psaA-psaB-rps14 promoter region. Planta. 1997;203:373–380. doi: 10.1007/s004250050203. [DOI] [PubMed] [Google Scholar]
  • 18.Shinozaki K., Ohme M., Tanaka M., Wakasugi T., Hayashida N., Matsubayashi T., Zaita N., Chungwonse J., Obokata J., Yamaguchi-Shinozaki K., Ohto C., Torazawa K., Meng B.Y., Sugita M., Deno H., Kamogashira T., Yamada K., Kusuda J., Takaiwa F., Kato A., Tohdoh N., Shimada H., Sugiura M. The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J. 1986;5:2043–2049. doi: 10.1002/j.1460-2075.1986.tb04464.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Higgins D., Thompson J., Gibson T., Thompson J.D., Higgins D.G., Gibson T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Schwartz S., Zhang Z., Frazer K.A., Smit A., Riemer C., Bouck J., Gibbs R., Hardison R., Miller W. PipMaker-a web server for aligning two genomic DNA sequences. Genome Res. 2000;10:577–586. doi: 10.1101/gr.10.4.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Maier R.M., Neckermann K., Igloi G.L., Kossel H. Complete sequence of the maize chloroplast genome: gene content. hotspots of divergence and fine tuning of genetic information by transcript editing. J. Mol. Biol. 1995;251:614–628. doi: 10.1006/jmbi.1995.0460. [DOI] [PubMed] [Google Scholar]
  • 22.Kim K.J., Lee H.L. Complete chloroplast genome sequence from Korean ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. DNA Res. 2004;11:247–261. doi: 10.1093/dnares/11.4.247. [DOI] [PubMed] [Google Scholar]
  • 23.Kim K.J., Lee H.L. Widespread occurance of small inversions in the chloroplast genomes of land plants. Mol. Cells. 2005;19:104–113. [PubMed] [Google Scholar]
  • 24.Palmer J.D. Plastid chromosomes: structure and evolution. In: I.K V., L B., editors. Cell Culture and Somatic Cell Genetics in Plants. San Diego: Academic Press; 1991. pp. 5–53. [Google Scholar]
  • 25.Kelchner S.A., Wende J.F. Hairpins create minute inversions in noncoding regions of chloroplast DNA. Curr. Genet. 1996;30:259–262. doi: 10.1007/s002940050130. [DOI] [PubMed] [Google Scholar]
  • 26.Shinozaki K., Hayashida N., Sugiura M. Nicotiana chloroplast genes for components of the photosynthetic apparatus. Photosynthesis Res. 1988;18:7–31. doi: 10.1007/BF00042978. [DOI] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES