Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2012 Aug 15;17(4):542–548. doi: 10.2478/s11658-012-0026-3

Dynamic instability — A common denominator in prokaryotic and eukaryotic DNA segregation and cell division

John A Fuesler 1,, Hsin-Jung Sophia Li 1
PMCID: PMC6275791  PMID: 22893264

Abstract

Dynamic instability is an essential phenomenon in eukaryotic nuclear division and prokaryotic plasmid R1 segregation. Although the molecular machines used in both systems differ greatly in composition, strong similarities and requisite nuances in dynamics and segregation mechanisms are observed. This brief examination of the current literature provides a functional comparison between prokaryotic and eukaryotic dynamically unstable filaments, specifically ParM and microtubules. Additionally, this mini-review should support the notion that any dynamically unstable filament could serve as the molecular machine driving DNA segregation, but these machines possess auxiliary features to adapt to temporal and spatial disparities in either system.

Key words: Dynamic instability, Microtubules, ParM filaments, R1 plasmid, Mitosis, Mitotic spindle, Brownian ratchet, Cytoskeleton evolution, Catastrophe/recovery

Full Text

The Full Text of this article is available as a PDF (464.3 KB).

Abbreviations used

APC

anaphase-promoting complex

ATP

adenosine-5′-triphosphate

CDK

cyclin-dependent kinase E. coli-Escherichia coli

GTP

guanosine-5′-triphosphate

MT

microtubule

References

  • 1.Howard J., Hyman A.A. Dynamics and mechanics of the microtubule plus end. Nature. 2003;422:753–758. doi: 10.1038/nature01600. [DOI] [PubMed] [Google Scholar]
  • 2.Tolic-Norrelykke I.M. Push-me-pull-you: how microtubules organize the cell interior. Eur. Biophys. J. Biophys. Lett. 2008;37:1271–1278. doi: 10.1007/s00249-008-0321-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Garner E.C., Campbell C.S., We ibel D.B., Mullins R.D. Reconstitution of DNA segregation driven by assembly of a prokaryotic actin homolog. Science. 2007;315:1270–1274. doi: 10.1126/science.1138527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Blohm D., Goebel W. Restriction map of the antibiotic resistance plasmid R1drd-19 and its derivatives pKN102 (R1drd-19B2) and R1drd-16 for the enzymes BamHI, HindIII, EcoRI and SalI. Mol. Gen. Genet. 1978;167:119–127. doi: 10.1007/BF00266905. [DOI] [PubMed] [Google Scholar]
  • 5.Erickson H.P. Evolution of the cytoskeleton. Bioessays. 2007;29:668–677. doi: 10.1002/bies.20601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Dogterom M., Kerssemakers J.W., Romet-Lemonne G., Janson M.E. Force generation by dynamic microtubules. Curr. Opin. Cell Biol. 2005;17:67–74. doi: 10.1016/j.ceb.2004.12.011. [DOI] [PubMed] [Google Scholar]
  • 7.Sanhaji M., Friel C.T., Kreis N.N., Kramer A., Martin C., Howard J., Strebhardt K., Yuan J. Functional and spatial regulation of mitotic centromere-associated kinesin by cyclin-dependent kinase 1. Mol. Cell. Biol. 2010;30:2594–2607. doi: 10.1128/MCB.00098-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Chee M.K., Haase S.B. B-cyclin/CDKs regulate mitotic spindle assembly by phosphorylating kinesins-5 in budding yeast. PLoS Genet. 2010;6:e1000935. doi: 10.1371/journal.pgen.1000935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Peters J.M. The anaphase-promoting complex: proteolysis in mitosis and beyond. Mol. Cell. 2002;9:931–943. doi: 10.1016/S1097-2765(02)00540-3. [DOI] [PubMed] [Google Scholar]
  • 10.Westermann S., Wang H.W., Avila-Sakar A., Drubin D.G., Nogales E., Barnes G. The Dam1 kinetochore ring complex moves processively on depolymerizing microtubule ends. Nature. 2006;440:565–569. doi: 10.1038/nature04409. [DOI] [PubMed] [Google Scholar]
  • 11.Welburn J.P., Grishchuk E.L., Backer C.B., Wilson-Kubalek E.M., Yates J.R., 3rd, Cheeseman I.M. The human kinetochore Ska1 complex facilitates microtubule depolymerization-coupled motility. Dev. Cell. 2009;16:374–385. doi: 10.1016/j.devcel.2009.01.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Holy T.E., Leibler S. Dynamic instability of microtubules as an efficient way to search in space. Proc. Natl. Acad. Sci. U.S.A. 1994;91:5682–5685. doi: 10.1073/pnas.91.12.5682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Salje J., Zuber B., Lowe J. Electron cryomicroscopy of E. coli reveals filament bundles involved in plasmid DNA segregation. Science. 2009;323:509–512. doi: 10.1126/science.1164346. [DOI] [PubMed] [Google Scholar]
  • 14.Jun S., Wright A. Entropy as the driver of chromosome segregation. Nat. Rev. Microbiol. 2010;8:600–607. doi: 10.1038/nrmicro2391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Gerdes K., Howard M., Szardenings F. Pushing and pulling in prokaryotic DNA segregation. Cell. 2010;141:927–942. doi: 10.1016/j.cell.2010.05.033. [DOI] [PubMed] [Google Scholar]
  • 16.Garner E.C., Campbell C.S., Mullins R.D. Dynamic instability in a DNA-segregating prokaryotic actin homolog. Science. 2004;306:1021–1025. doi: 10.1126/science.1101313. [DOI] [PubMed] [Google Scholar]
  • 17.Zhang D., Rogers G.C., Buster D.W., Sharp D.J. Three microtubule severing enzymes contribute to the “Pacman-flux” machinery that moves chromosomes. J. Cell Biol. 2007;177:231–242. doi: 10.1083/jcb.200612011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Castagnetti S., Oliferenko S., Nurse P. Fission yeast cells undergo nuclear division in the absence of spindle microtubules. PLoS Biol. 2010;8:e1000512. doi: 10.1371/journal.pbio.1000512. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES