Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2014 Aug 20;19(3):407–437. doi: 10.2478/s11658-014-0205-5

The role of advanced glycation end products in various types of neurodegenerative disease: a therapeutic approach

Parveen Salahuddin 1, Gulam Rabbani 2, Rizwan Hasan Khan 2,
PMCID: PMC6275793  PMID: 25141979

Abstract

Protein glycation is initiated by a nucleophilic addition reaction between the free amino group from a protein, lipid or nucleic acid and the carbonyl group of a reducing sugar. This reaction forms a reversible Schiff base, which rearranges over a period of days to produce ketoamine or Amadori products. The Amadori products undergo dehydration and rearrangements and develop a cross-link between adjacent proteins, giving rise to protein aggregation or advanced glycation end products (AGEs). A number of studies have shown that glycation induces the formation of the β-sheet structure in β-amyloid protein, α-synuclein, transthyretin (TTR), copper-zinc superoxide dismutase 1 (Cu, Zn-SOD-1), and prion protein. Aggregation of the β-sheet structure in each case creates fibrillar structures, respectively causing Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, familial amyloid polyneuropathy, and prion disease. It has been suggested that oligomeric species of glycated α-synuclein and prion are more toxic than fibrils. This review focuses on the pathway of AGE formation, the synthesis of different types of AGE, and the molecular mechanisms by which glycation causes various types of neurodegenerative disease. It discusses several new therapeutic approaches that have been applied to treat these devastating disorders, including the use of various synthetic and naturally occurring inhibitors. Modulation of the AGE-RAGE axis is now considered promising in the prevention of neurodegenerative diseases. Additionally, the review covers several defense enzymes and proteins in the human body that are important anti-glycating systems acting to prevent the development of neurodegenerative diseases.

Keywords: Aggregation, Advanced glycation end products, Glycation in Alzheimer’s disease, Glycation in Parkinson’s disease, Glycation in amyotrophic lateral sclerosis, Glycation in familial amyloid polyneuropathy, Glycation in prion diseases, Glyoxylases, AGE inhibitors

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Abbreviations used

amyloid beta

AD

Alzheimer’s disease

AFGPs

alkylformyl glycosylpyrroles

AG

aminoguanidne

AGEs

advanced glycation end products

AKR

aldo-keto-reductase

ALI

arginine lysine imidazole

ALS

amylolateral sclerosis

ALT

711-alagebrium chloride

APP

amyloid precursor protein

BSE

bovine spongiform encelopathy

CD-36

cluster of differentiation 36

CFD

Creutzfeldt-Jakob disease

CML

Nɛ-carboxymethyllysine

Cu, Zn-SOD-1

copper-zinc superoxide dismutase 1

DETAPAC

diethylenetriaminepentaacetic acid

3DG

3-deoxyglucosone

EGCG

(−)-epigallocatechin gallate

FAP

familial amyloid polyneuropathy

FN3K

fructosamine-3-kinase

GAPDH

glyceraldehyde-3-phosphate dehydrogenase

GOLD

glyoxal lysine dimer

GSH

glutathione

GSK-3

glycogen synthase kinase-3

IL-1β

interleukin-1β

IFA

isoferulic acid

LBs

Lewy bodies

LRRK-2

leucine-rich repeat kinase 2

MG

methylglyoxal

MOLD

methylglyoxal lysine dimer

MSR type II

macrophage scavenger receptor types II

NADPH

nicotinamide adenine dinucleotide phosphate

NF-κβ

nuclear factor-κB

NFTs

neurofibrillary tangles

OM

origanum majorana

OST-48

oligosaccharyltransferase-48

PD

Parkinson’s disease

PM

pyridoxamine

PrPC

cellular prion protein

PTB

phenacylthiazolium bromide

RAGE

receptor of advanced glycation end products

ROS

reactive oxygen species

SNCA

synuclein alpha

sRAGE

soluble receptor of advanced glycation end products

TTR

transthyretin

TK

transketolase

TNFα

tumor necrosis factor-α

TPP

thiamine pyrophosphate

References

  • 1.Forbes JM, Cooper ME, Oldfield MD, Thomas MC. Role of advanced glycation end products in diabetic nephropathy. J. Am. Soc. Nephrol. 2003;14:254–258. doi: 10.1097/01.asn.0000077413.41276.17. [DOI] [PubMed] [Google Scholar]
  • 2.Ahmed N. Advanced glycation end products-role in pathology of diabetic complications. Diabetes Res. Clin. Pract. 2005;67:3–21. doi: 10.1016/j.diabres.2004.09.004. [DOI] [PubMed] [Google Scholar]
  • 3.Ulrich P, Cerami A. Protein glycation, diabetes and aging. Recent Prog. Horm. Res. 2001;56:1–21. doi: 10.1210/rp.56.1.1. [DOI] [PubMed] [Google Scholar]
  • 4.Baynes JW, Thorpe SR. Role of oxidative stress in diabetic complications. a new perspective on an old paradigm. Diabetes. 1999;48:19. doi: 10.2337/diabetes.48.1.1. [DOI] [PubMed] [Google Scholar]
  • 5.Chellan P, Nagaraj RH. Early glycation products produce pentosidine cross-links on native proteins. Novel mechanism of pentosidine formation and propagation of glycation. J. Biol. Chem. 2001;276:3895–903. doi: 10.1074/jbc.M008626200. [DOI] [PubMed] [Google Scholar]
  • 6.Stitt A, Gardiner TA, Alderson NL, Canning P, Frizzell N, Duff N, Boyle C, Januszewski AS, Chachich M, Baynes JW, Thorpe SR. The AGE inhibitor pyridoxamine inhibits development of retinopathy in experimental diabetes. Diabetes. 2002;51:2826–2832. doi: 10.2337/diabetes.51.9.2826. [DOI] [PubMed] [Google Scholar]
  • 7.Thornalley PJ, Minhas HS. Rapid hydrolysis and slow alpha, betadicarbonyl cleavage of an agent proposed to cleave glucose-derived protein cross-links. Biochem. Pharmacol. 1999;57:303–307. doi: 10.1016/s0006-2952(98)00284-6. [DOI] [PubMed] [Google Scholar]
  • 8.Horie K, Miyata T, Yasuda T, Takeda A, Yasuda Y, Maeda K, Sobue G, Kurokawa K. Immunohistochemical localization of advanced glycation end products, pentosidine, and carboxymethyllysine in lipofuscin pigments of Alzheimer’s disease and aged neurons. Biochem. Biophys. Res. Commun. 1997;236:327–330. doi: 10.1006/bbrc.1997.6944. [DOI] [PubMed] [Google Scholar]
  • 9.Takeda A, Yasuda T, Miyata T, Goto Y, Wakai M, Watanabe M, Yasuda Y, Horie K, Inagaki T, Doyu M, Maeda K, Sobue G. Advanced glycation end products colocalized with astrocytes and microglial cells in Alzheimer’s disease brain. Acta Neuropathol. 1998;95:555–558. doi: 10.1007/s004010050839. [DOI] [PubMed] [Google Scholar]
  • 10.Castellani RJ, Harris PL, Sayre LM, Fujii J, Taniguchi N, Vitek MP, Founds H, Atwood CS, Perry G, Smith MA. Active glycation in neurofibrillary pathology of Alzheimer’s disease: N (epsilon)-(Carboxymethyl) lysine and hexitol-lysine. Free Radic. Biol. Med. 2001;31:175–180. doi: 10.1016/s0891-5849(01)00570-6. [DOI] [PubMed] [Google Scholar]
  • 11.Obayashi H, Nakano K, Shigeta H, Yamaguchi M, Yoshimori K, Fukui M, Fujii M, Kitagawa Y, Nakamura N, Nakamura K, Nakazawa Y, Ienaga K, Ohta M, Nishimura M, Fukui I, Kondo M. Formation of crossline as a fluorescent advanced glycation end product in vitro and in vivo. Biochem. Biophys. Res. Commun. 1996;226:37–41. doi: 10.1006/bbrc.1996.1308. [DOI] [PubMed] [Google Scholar]
  • 12.Reddy S, Bichler J, Wells-Knecht J, Thorpe SR, Baynes JW. N epsilon-(carboxymethyl) lysine is a dominant advanced glycation end product (AGE) antigen in tissue proteins. Biochemistry. 1995;34:10872–10878. doi: 10.1021/bi00034a021. [DOI] [PubMed] [Google Scholar]
  • 13.Frye EB, Degenhardt TP, Thorpe SR, Baynes JW. Role of the Maillard reaction in aging of tissue proteins. J. Biol. Chem. 1998;273:18714–18719. doi: 10.1074/jbc.273.30.18714. [DOI] [PubMed] [Google Scholar]
  • 14.Miyata T, Ueda Y, Yamada Y, Izuhara Y, Wada T, Jadoul M, Saito A, Kurokawa K, van Ypersele de Strihou C. Accumulation of carbonyls accelerates the formation of pentosidine, an advanced glycation end product: carbonyl stress in uremia. J. Am. Soc. Nephrol. 1998;9:2349–2356. doi: 10.1681/ASN.V9122349. [DOI] [PubMed] [Google Scholar]
  • 15.Miyata T, van Ypersele de Strihou C, Kurokawa K, Baynes JW. Alterations in nonenzymatic biochemistry in uremia: origin and significance of “carbonyl stress” in long term uremic complications. Kidney Int. 1999;55:389–399. doi: 10.1046/j.1523-1755.1999.00302.x. [DOI] [PubMed] [Google Scholar]
  • 16.Kaneko M, Bucciarelli L, Hwang YC, Lee L, Yan SF, Schmidt AM, Ramasamy R. Aldose reductase and AGE-RAGE pathways: key players in myocardial ischemic injury. Ann. N. Y. Acad. Sci. 2005;1043:702–709. doi: 10.1196/annals.1333.081. [DOI] [PubMed] [Google Scholar]
  • 17.Vlassara H, Palace MR. Diabetes and advanced glycation end products. J. Intern. Med. 2002;251:87–101. doi: 10.1046/j.1365-2796.2002.00932.x. [DOI] [PubMed] [Google Scholar]
  • 18.Rabbani G, Ahmad E, Zaidi N, Khan RH. pH-dependent conformational transitions in conalbumin (ovotransferrin), a metalloproteinase from hen egg white. Cell Biochem. Biophys. 2011;61:551–560. doi: 10.1007/s12013-011-9237-x. [DOI] [PubMed] [Google Scholar]
  • 19.Rabbani G, Ahmad E, Zaidi N, Fatima S, Khan RH. pH induced molten globule state of Rhizopus niveus lipase is more resistant against thermal and chemical denaturation than its native state. Cell Biochem. Biophys. 2012;62:487–499. doi: 10.1007/s12013-011-9335-9. [DOI] [PubMed] [Google Scholar]
  • 20.Rabbani G, Kaur J, Ahmad E, Khan RH, Jain SK. Structural characteristics of thermostable immunogenic outer membrane protein from Salmonella enterica serovar Typhi (S. Typhi) Appl. Microbiol. Biotechnol. 2014;98:2533–2543. doi: 10.1007/s00253-013-5123-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Neeper M, Schmidt AM, Brett J, Yan SD, Wang F, Pan YC, Elliston K, Stern D, Shaw A. Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J. Biol. Chem. 1992;267:14998–15004. [PubMed] [Google Scholar]
  • 22.el Khoury J, Thomas CA, Loike JD, Hickman SE, Cao L, Silverstein SC. Macrophages adhere to glucose-modified basement membrane collagen IV via their scavenger receptors. J. Biol. Chem. 1994;269:10197–10200. [PubMed] [Google Scholar]
  • 23.Vlassara H, Li YM, Imani F, Wojciechowicz D, Yang Z, Liu FT, Cerami A. Identification of galectin-3 as a high-affinity binding protein for advanced glycation end products (AGE): a new member of the AGEreceptor complex. Mol. Med. 1995;1:634–646. [PMC free article] [PubMed] [Google Scholar]
  • 24.Li YM, Mitsuhashi T, Wojciechowicz D, Shimizu N, Li J, Stitt A, He C, Banerjee D, Vlassara H. Molecular identity and cellular distribution of advanced glycation end product receptors: relationship of p60 to OST-48 and p90 to 80K-H membrane proteins. Proc. Natl. Acad. Sci. USA. 1996;93:11047–11052. doi: 10.1073/pnas.93.20.11047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Ohgami N, Nagai R, Ikemoto M, Arai H, Miyazaki A, Hakamata H, Horiuchi S, Nakayama H. CD36 serves as a receptor for advanced glycation end products (AGE) J. Diabet. Complicat. 2002;16:56–59. doi: 10.1016/s1056-8727(01)00208-2. [DOI] [PubMed] [Google Scholar]
  • 26.Schmidt AM, Yan SD, Yan SF, Stern DM. The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses. J. Clin. Invest. 2001;108:949–955. doi: 10.1172/JCI14002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Chen X, Walker DG, Schmidt AM, Arancio O, Lue LF, Yan SD. RAGE: a potential target for Aβ-mediated cellular perturbation in Alzheimer’s disease. Curr. Mol. Med. 2007;7:735–742. doi: 10.2174/156652407783220741. [DOI] [PubMed] [Google Scholar]
  • 28.Grossman H, Bergmann C, Parker S. Dementia: a brief review. Mt. Sinai J. Med. 2006;73:985–992. [PubMed] [Google Scholar]
  • 29.Campion D, Dumanchin C, Hannequin D, Dubois B, Belliard S, Puel M, Thomas-Anterion C, Michon A, Martin C, Charbonnier F, Raux G, Camuzat A, Penet C, Mesnage V, Martinez M, Clerget-Darpoux F, Brice A, Frebourg T. Early-onset autosomal dominant Alzheimer’s disease: prevalence, genetic heterogeneity, and mutation spectrum. Am. J. Hum. Genet. 1999;65:664–670. doi: 10.1086/302553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Rademakers R, Rovelet-Lecrux A. Recent insights into the molecular genetics of dementia. Trends Neurosci. 2009;32:45–46. doi: 10.1016/j.tins.2009.05.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Obrenovich ME, Monnier VM. Glycation stimulates amyloid formation. Sci. Aging Knowledge Environ. 2004;2:pe3. doi: 10.1126/sageke.2004.2.pe3. [DOI] [PubMed] [Google Scholar]
  • 32.Munch G, Schicktanz D, Behme A, Gerlach M, Riederer P, Palm D, Schinzel R. Amino acid specificity of glycation and protein-AGE crosslinking reactivities determined with a dipeptide SPOT library. Nat. Biotechnol. 1999;17:1006–1010. doi: 10.1038/13704. [DOI] [PubMed] [Google Scholar]
  • 33.Wong A, Luth HJ, Deuther-Conrad W, Dukic-Stefanovic S, Gasic-Milenkovic J, Arendt T, Munch G. Advanced glycation end products co-localize with inducible nitric oxide synthase in Alzheimer’s disease. Brain Res. 2001;920:32–40. doi: 10.1016/s0006-8993(01)02872-4. [DOI] [PubMed] [Google Scholar]
  • 34.Reddy VP, Obrenovich ME, Atwood CS, Perry G, Smith MA. Involvement of Maillard reactions in Alzheimer’s disease. Neurotox. Res. 2002;4:191–209. doi: 10.1080/1029840290007321. [DOI] [PubMed] [Google Scholar]
  • 35.Vitek MP, Bhattacharya K, Glendening JM, Stopa E, Vlassara H, Bucala R, Manogue K, Cerami A. Advanced glycation end products contribute to amyloidosis in Alzheimer’s disease. Proc. Natl. Acad. Sci. USA. 1994;91:4766–4770. doi: 10.1073/pnas.91.11.4766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Smith MA, Taneda S, Richey PL, Miyata S, Yan SD, Stern D, Sayre LM, Monnier VM, Perry G. Advanced Maillard reaction end products are associated with Alzheimer’s disease pathology. Proc. Natl. Acad. Sci. USA. 1994;91:5710–5714. doi: 10.1073/pnas.91.12.5710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Mattson MP, Carney JW, Butterfield DA. A tombstone in Alzheimer’s? Nature. 1995;373:481. doi: 10.1038/373481a0. [DOI] [PubMed] [Google Scholar]
  • 38.Smith MA, Sayre LM, Vitek MP, Monnier VM, Perry G. Early AGEing and Alzheimer’s. Nature. 1995;374:316. doi: 10.1038/374316b0. [DOI] [PubMed] [Google Scholar]
  • 39.Li JJ, Dickson D, Hof PR, Vlassara H. Receptors for advanced glycosylation end products in human brain: role in brain homeostasis. Mol. Med. 1998;4:46–60. [PMC free article] [PubMed] [Google Scholar]
  • 40.Sasaki N, Toki S, Chowei H, Saito T, Nakano N, Hayashi Y, Takeuchi M, Makita Z. Immunohistochemical distribution of the receptor for advanced glycation end products in neurons and astrocytes in Alzheimer’s disease. Brain Res. 2001;888:256–262. doi: 10.1016/s0006-8993(00)03075-4. [DOI] [PubMed] [Google Scholar]
  • 41.Coker LH, Wagenknecht LE. Advanced glycation end products, diabetes, and the brain. Neurology. 2011;77:1326–1327. doi: 10.1212/WNL.0b013e318231532b. [DOI] [PubMed] [Google Scholar]
  • 42.Munch G, Mayer S, Michaelis J, Hipkiss AR, Riederer P, Muller R, Neumann A, Schinzel R, Cunningham AM. Influence of advanced glycation end products and AGE-inhibitors on nucleation-dependent polymerization of beta-amyloid peptide. Biochim. Biophys. Acta. 1997;1360:17–29. doi: 10.1016/s0925-4439(96)00062-2. [DOI] [PubMed] [Google Scholar]
  • 43.Li XH, Du LL, Cheng XS, Jiang X, Zhang Y, Lv BL, Liu R, Wang JZ, Zhou XW. Glycation exacerbates the neuronal toxicity of β-amyloid. Cell Death Dis. 2013;4:e673. doi: 10.1038/cddis.2013.180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Ko SY, Lin YP, Lin YS, Chang SS. Advanced glycation end products enhance amyloid precursor protein expression by inducing reactive oxygen species. Free Radic. Biol. Med. 2010;49:474–480. doi: 10.1016/j.freeradbiomed.2010.05.005. [DOI] [PubMed] [Google Scholar]
  • 45.Ledesma MD, Bonay P, Avila J. Tau protein from Alzheimer’s disease patients is glycated at its tubulin-binding domain. J. Neurochem. 1995;65:1658–1664. doi: 10.1046/j.1471-4159.1995.65041658.x. [DOI] [PubMed] [Google Scholar]
  • 46.Li X H, Lv B L, Xie J Z, Liu J X, Zhou W, Wang J Z. AGEs induce Alzheimer-like tau pathology and memory deficit via RAGEmediated GSK-3 activation. Neurobiol. Aging. 2012;33:400–410. doi: 10.1016/j.neurobiolaging.2011.02.003. [DOI] [PubMed] [Google Scholar]
  • 47.Chen K, Maley J, Yu PH. Potential implications of endogenous aldehydes in β-amyloid misfolding oligomerization and fibrillogenesis. J. Neurochem. 2006;99:1413–1424. doi: 10.1111/j.1471-4159.2006.04181.x. [DOI] [PubMed] [Google Scholar]
  • 48.Jack MM, Ryals JM, Wright DE. Protection from diabetes-induced peripheral sensory neuropathy — A role for elevated glyoxalase I? Exp. Neurol. 2012;234:62–69. doi: 10.1016/j.expneurol.2011.12.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Kuhla B, Boeck K, Schmidt A, Ogunladem V, Arendt T, Munch G, Luth HJ. Age-and stage-dependent glyoxalase I expression and its activity in normal and Alzheimer’s disease brains. Neurobiol. Aging. 2007;28:29–41. doi: 10.1016/j.neurobiolaging.2005.11.007. [DOI] [PubMed] [Google Scholar]
  • 50.Butterfield DA, Hardas SS, Lange ML. Oxidatively modified glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and Alzheimer’s disease: many pathways to neurodegeneration. J. Alzheimers Dis. 2010;20:369–393. doi: 10.3233/JAD-2010-1375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Sato T, Shimogaito N, Wu X, Kikuchi S, Yamagishi S, Takeuchi M. Toxic advanced glycation end products (TAGE) theory in Alzheimer’s disease. Am. J. Alzheimers Dis. Other Demen. 2006;21:197–208. doi: 10.1177/1533317506289277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Takeuchi M, Kikuchi S, Sasaki N, Suzuki T, Watai T, Iwaki M, Bucala R, Yamagishi S. Involvement of advanced glycation endproducts (AGEs) in Alzheimer’s disease. Curr. Alzheimer Res. 2004;1:39–46. doi: 10.2174/1567205043480582. [DOI] [PubMed] [Google Scholar]
  • 53.Guerrero E, Vasudevaraju P, Hegde ML, Britton G B, Rao KS. Recent advances in α-synuclein functions, advanced glycation, and toxicity: implications for Parkinson’s disease. Mol. Neurobiol. 2013;47:525–536. doi: 10.1007/s12035-012-8328-z. [DOI] [PubMed] [Google Scholar]
  • 54.Defebvre L. Parkinson’s disease: role of genetic and environment factors. Involvement in everyday clinical practice. Rev. Neurol (Paris) 2010;166:764–769. doi: 10.1016/j.neurol.2010.07.014. [DOI] [PubMed] [Google Scholar]
  • 55.Nuytemans K, Theuns J, Cruts M, Van Broeckhoven C. Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: a mutation update. Hum. Mutat. 2010;31:763–780. doi: 10.1002/humu.21277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Martin I, Dawson VL, Dawson TM. The impact of genetic research on our understanding of Parkinson’s disease. Prog. Brain. Res. 2010;183:21–41. doi: 10.1016/S0079-6123(10)83002-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Martin I, Dawson VL, Dawson TM. Recent advances in the genetics of Parkinson’s disease. Annu. Rev. Genomics Hum. Genet. 2011;12:301–325. doi: 10.1146/annurev-genom-082410-101440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Hegde ML, Vasudevaraju P, Rao KJ. DNA induced folding/fibrillation of alpha-synuclein: new insights in Parkinson’s disease. Front. Biosci. 2010;15:418–436. doi: 10.2741/3628. [DOI] [PubMed] [Google Scholar]
  • 59.Hegde ML, Jagannatha Rao KS. Challenges and complexities of alpha-synuclein toxicity: new postulates in unfolding the mystery associated with Parkinson’s disease. Arch. Biochem. Biophys. 2003;418:169–178. doi: 10.1016/j.abb.2003.08.015. [DOI] [PubMed] [Google Scholar]
  • 60.Vicente Miranda H, Outeiro TF. The sour side of neurodegenerative disorders: the effects of protein glycation. J. Pathol. 2010;221:13–25. doi: 10.1002/path.2682. [DOI] [PubMed] [Google Scholar]
  • 61.Padmaraju V, Bhaskar JJ, Prasada Rao UJ, Salimath PV, Rao KS. Role of advanced glycation on aggregation and DNA binding properties of alpha-synuclein. J. Alzheimers Dis. 2011;24:211–221. doi: 10.3233/JAD-2011-101965. [DOI] [PubMed] [Google Scholar]
  • 62.Kazantsev A, Preisinger E, Dranovsky A, Goldgaber D, Housman D. Insoluble detergent-resistant aggregates form between pathological and nonpathological lengths of polyglutamine in mammalian cells. Proc. Natl. Acad. Sci. USA. 1999;96:11404–11409. doi: 10.1073/pnas.96.20.11404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Choonara YE, Pillay V, du Toit LC, Modi G, Naidoo D, Ndesendo VM, Sibambo SR. Trends in the molecular pathogenesis and clinical therapeutics of common neurodegenerative disorders. Int. J. Mol. Sci. 2009;10:2510–2557. doi: 10.3390/ijms10062510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Ve’ronique VB, Hussein D, Patrick AD, Edor K, Rouleau Guy AR, Paul VN. TDP-43, protein aggregation, and amyotrophic lateral sclerosis. US Neurology. 2010;5:35–38. [Google Scholar]
  • 65.Gros-Louis F, Gaspar C, Rouleau GA. Genetics of familial and sporadic amyotrophic lateral sclerosis. Biochim. Biophys. Acta. 2006;1762:956–972. doi: 10.1016/j.bbadis.2006.01.004. [DOI] [PubMed] [Google Scholar]
  • 66.Chou SM, Wang HS, Taniguchi A, Bucala R. Advanced glycation end products in neurofilament conglomeration of motoneurons in familial and sporadic amyotrophic lateral sclerosis. Mol. Med. 1998;4:324–332. [PMC free article] [PubMed] [Google Scholar]
  • 67.Shibata N, Hirano A, Hedley-Whyte ET, Dal Canto MC, Nagai R, Uchida K, Horiuchi S, Kawaguchi M, Yamamoto T, Kobayashi M. Selective formation of certain advanced glycation end products in spinal cord astrocytes of humans and mice with superoxide dismutase-1 mutation. Acta Neuropathol. 2002;104:171–78. doi: 10.1007/s00401-002-0537-5. [DOI] [PubMed] [Google Scholar]
  • 68.Iłzecka J. Serum-soluble receptor for advanced glycation end product levels in patients with amyotrophic lateral sclerosis. Acta Neurol. Scand. 2009;120:119–122. doi: 10.1111/j.1600-0404.2008.01133.x. [DOI] [PubMed] [Google Scholar]
  • 69.Sakaguchi T, Yan SF, Yan SD, Belov D, Rong LL, Sousa M, Andrassy M, Marso SP, Duda S, Arnold B, Liliensiek B, Nawroth PP, Stern DM, Schmidt AM, Naka Y. Central role of RAGE-dependent neointimal expansion in arterial restenosis. J. Clin. Invest. 2003;11:959–972. doi: 10.1172/JCI17115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Takamiya R, Takahashi M, Myint T, Park YS, Miyazawa N, Endo T, Fujiwara N, Sakiyama H, Misonou Y, Miyamot Y, Fujii J, Taniguchi N. Glycation proceeds faster in mutated Cu, Zn superoxide dismutases related to familial amyotrophic lateral sclerosis. FASEB J. 2003;17:938–940. doi: 10.1096/fj.02-0768fje. [DOI] [PubMed] [Google Scholar]
  • 71.Kaufmann E, Boehm BO, Süssmuth SD, Kientsch-Engel R, Sperfeld AC, Ludolph A, Tumani H. The advanced glycation end product N epsilon-(carboxymethyl) lysine level is elevated in cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Neurosci. Lett. 2004;371:226–229. doi: 10.1016/j.neulet.2004.08.071. [DOI] [PubMed] [Google Scholar]
  • 72.Andrade CA. Peculiar form of peripheral neuropathy; familiar atypical generalized amyloidosis with special involvement of the peripheral nerves. Brain. 1952;75:408–427. doi: 10.1093/brain/75.3.408. [DOI] [PubMed] [Google Scholar]
  • 73.Saraiva MJ, Birken S, Costa PP, Goodman DS. Amyloid fibril protein in familial amyloidotic polyneuropathy, Portuguese type. Definition of molecular abnormality in transthyretin (prealbumin) J. Clin. Invest. 1984;74:104–119. doi: 10.1172/JCI111390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.da Costa G, Gomes RA, Guerreiro A, Mateus, Monteiro E, Barroso E, Coelho AV, Freire AP, Cordeiro C. Beyond genetic factors in familial amyloidotic polyneuropathy: protein glycation and the loss of fibrinogen’s chaperone activity. PLoS One. 2011;6:e24850. doi: 10.1371/journal.pone.0024850. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Matsunaga N, Anan I, Forsgren S, Nagai R, Rosenberg P, Horiuchi S, Ando Y, Suhr OB. Advanced glycation end products (AGE) and the receptor for AGE are present in gastrointestinal tract of familial amyloidotic polyneuropathy patients but do not induce NF-κB activation. Acta Neuropathol. 2002;104:441–447. doi: 10.1007/s00401-002-0574-0. [DOI] [PubMed] [Google Scholar]
  • 76.Sousa MM, Du Yan S, Fernandes R, Guimaraes A, Stern D, Saraiva MJ. Familial amyloid polyneuropathy, receptor for advanced glycation end products-dependent triggering of neuronal inflammatory and apoptotic pathways. J. Neurosci. 2001;21:7576–7586. doi: 10.1523/JNEUROSCI.21-19-07576.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Shorter J, Lindquist S. Prions as adaptive conduits of memory and inheritance. Nat. Rev. Genet. 2005;6:435–450. doi: 10.1038/nrg1616. [DOI] [PubMed] [Google Scholar]
  • 78.Knight RS, Will RG. Prion diseases. J. Neurol. Neurosurg. Psychiat. 2004;75:36–42. doi: 10.1136/jnnp.2004.036137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79.Prusiner SB. Prions. Proc. Natl. Acad. Sci. USA. 1998;95:13363–13383. doi: 10.1073/pnas.95.23.13363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80.Soto C, Castilla J. The controversial protein-only hypothesis of prion propagation. Nat. Med. 2004;10:63–67. doi: 10.1038/nm1069. [DOI] [PubMed] [Google Scholar]
  • 81.Didonna A. Prion protein and its role in signal transduction. Cell. Mol. Biol. Lett. 2013;18:209–230. doi: 10.2478/s11658-013-0085-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Sasaki N, Takeuchi M, Chowei H, Kikuchi S, Hayashi Y, Nakano N, Ikeda H, Yamagishi S, Kitamoto T, Saito T, Makita Z. Advanced glycation end products (AGE) and their receptor (RAGE) in the brain of patients with Creutzfeldt-Jakob disease with prion plaques. Neurosci. Lett. 2002;326:117–120. doi: 10.1016/s0304-3940(02)00310-5. [DOI] [PubMed] [Google Scholar]
  • 83.Choi YG, Kim JI, Jeon YC, Park SJ, Choi EK, Rubenstein R, Kascsak RJ, Carp RI, Kim YS. Nonenzymatic glycation at the N-terminus of pathogenic prion protein in transmissible spongiform encephalopathies. J. Biol. Chem. 2004;279:30402–30409. doi: 10.1074/jbc.M400854200. [DOI] [PubMed] [Google Scholar]
  • 84.Southern L, Williams J, Esiri MM. Immunohistochemical study of N-epsilon-carboxymethyl lysine (CML) in human brain: relation to vascular dementia. BMC Neurol. 2007;7:35. doi: 10.1186/1471-2377-7-35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Yaffe K, Lindquist K, Schwartz AV, Vitartas C, Vittinghoff E, Satterfield S, Simonsick EM, Launer L, Rosano C, Cauley JA, Harris T. Advanced glycation end product level, diabetes, and accelerated cognitive aging. Neurology. 2011;77:1351–1356. doi: 10.1212/WNL.0b013e3182315a56. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.Srikanth V, Westcott B, Forbes J, Phan TG, Beare R, Venn A, Pearson S, Greenaway T, Parameswaran V, Münch G. Methylglyoxal, cognitive function and cerebral atrophy in older people. J. Gerontol. A Biol. Sci. Med. Sci. 2013;68:68–73. doi: 10.1093/gerona/gls100. [DOI] [PubMed] [Google Scholar]
  • 87.Vlassara H, Uribarri J. Glycoxidation and diabetic complications: modern lessons and a warning? Rev. Endocr. Metab. Disord. 2004;5:181–188. doi: 10.1023/B:REMD.0000032406.84813.f6. [DOI] [PubMed] [Google Scholar]
  • 88.Goldberg T, Cai W, Peppa M, Dardaine V, Baliga BS, Uribarri J, Vlassara H. Advanced glycoxidation end products in commonly consumed foods. J. Am. Diet. Assoc. 2004;104:1287–1291. doi: 10.1016/j.jada.2004.05.214. [DOI] [PubMed] [Google Scholar]
  • 89.Wautier JL, Schmidt AM. Protein glycation: a firm link to endothelial cell dysfunction. Circ. Res. 2004;95:233–238. doi: 10.1161/01.RES.0000137876.28454.64. [DOI] [PubMed] [Google Scholar]
  • 90.Vlassara H, Cai W, Crandall J, Goldberg T, Oberstein R, Dardaine V, Peppa M, Rayfield EJ. Inflammatory mediators are induced by dietary glycotoxins, a major risk factor for diabetic angiopathy. Proc. Natl. Acad. Sci. USA. 2002;99:15596–15601. doi: 10.1073/pnas.242407999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91.Förster A, Kuhne Y, Henle T. Studies on absorption and elimination of dietary Maillard reaction products. Ann. N. Y. Acad. Sci. 2005;1043:474–481. doi: 10.1196/annals.1333.054. [DOI] [PubMed] [Google Scholar]
  • 92.Henle T. AGEs in foods: do they play a role in uremia? Kidney Int. Suppl. 2003;63:S145–S147. doi: 10.1046/j.1523-1755.63.s84.16.x. [DOI] [PubMed] [Google Scholar]
  • 93.Cai W, Gao QD, Zhu L, Peppa M, He C, Vlassara H. Oxidative stress-inducing carbonyl compounds from common foods: novel mediators of cellular dysfunction. Mol. Med. 2002;8:337–346. [PMC free article] [PubMed] [Google Scholar]
  • 94.Miyata T, Ishikawa N, van Ypersele de Strihou C. Carbonyl stress and diabetic complications. Clin. Chem. Lab. Med. 2003;41:1150–1158. doi: 10.1515/CCLM.2003.178. [DOI] [PubMed] [Google Scholar]
  • 95.Cai W, Uribarri J, Zhu L, Chen X, Swamy S, Zhao Z, Grosjean F, Simonaro C, Kuchel GA, Schnaider-Beeri M, Woodward M, Striker GE, Vlassara H. Oral glycotoxins are a modifiable cause of dementia and the metabolic syndrome in mice and humans. Proc. Natl. Acad. Sci. USA. 2014;111:4940–4945. doi: 10.1073/pnas.1316013111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 96.van Boekel MA, van den Bergh PJ, Hoenders HJ. Glycation of human serum albumin: inhibition by diclofenac. Biochim. Biophys. Acta. 1992;1120:201–204. doi: 10.1016/0167-4838(92)90270-n. [DOI] [PubMed] [Google Scholar]
  • 97.Baynes JW. Role of oxidative stress in development of complication in diabetes. Diabetes. 1991;40:405–412. doi: 10.2337/diab.40.4.405. [DOI] [PubMed] [Google Scholar]
  • 98.Price DL, Rhett PM, Thorpe SR, Baynes JW. Chelating activity of advanced glycation end product (AGE) inhibitors. J. Biol. Chem. 2001;276:48967–48972. doi: 10.1074/jbc.M108196200. [DOI] [PubMed] [Google Scholar]
  • 99.Nagai R, Murray DB, Metz TO, Baynes JW. Chelation: a fundamental mechanism of action of AGE inhibitors, AGE breakers, and other inhibitors of diabetes complications. Diabetes. 2012;61:549–559. doi: 10.2337/db11-1120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100.Webster J, Urban C, Berbaum K, Loske C, Alpar A, Gärtner U, Garcia de Arriba S, Arendt T, Munch G. The carbonyl scavengers aminoguanidine and tenilsetam protect against the neurotoxic effects of methylglyoxal. Neurotox. Res. 2005;7:95–101. doi: 10.1007/BF03033780. [DOI] [PubMed] [Google Scholar]
  • 101.Munch G, Taneli Y, Schraven E, Schindler U, Schinzel R, Palm D, Riederer P. The cognition-enhancing drug tenilsetam is an inhibitor of protein crosslinking by advanced glycosylation. J. Neural. Transm. Park. Dis. Dement. Sect. 1994;8:193–208. doi: 10.1007/BF02260940. [DOI] [PubMed] [Google Scholar]
  • 102.Jakus V, Hrnciarova M, Carsky J, Krahulec B, Rietbrock N. Inhibition of nonenzymatic protein glycation and lipid peroxidation by drugs with anti-oxidant activity. Life Sci. 1999;65:1991–1993. doi: 10.1016/s0024-3205(99)00462-2. [DOI] [PubMed] [Google Scholar]
  • 103.Keita Y, Michailova M, Kratzer W, Wörner G, Wörner W, Rietbrock N. Influence of penicillamine on the formation of early nonenzymatic glycation products of human serum proteins. Int. J. Clin. Pharmacol. Ther. Toxicol. 1992;30:441–442. [PubMed] [Google Scholar]
  • 104.Stevens A. The effectiveness of putative anti-cataract agents in the prevention of protein glycation. J. Am. Optom. Assoc. 1995;66:744–749. [PubMed] [Google Scholar]
  • 105.Vasan S, Zhang X, Zhang X, Kapurniotu A, Bernhagen J, Teichberg S, Basgen J, Wagle D, Shih D, Terlecky I, Bucala R, Cerami A, Egan J, Ulrich P. An agent cleaving glucose-derived protein crosslinks in vitro and in vivo. Nature. 1996;382:275–278. doi: 10.1038/382275a0. [DOI] [PubMed] [Google Scholar]
  • 106.Sajithlal GB, Chittra P, Chandrakasan G. Effect of curcumin on the advanced glycation and cross-linking of collagen in diabetic rats. Biochem. Pharmacol. 1998;56:1607–1614. doi: 10.1016/s0006-2952(98)00237-8. [DOI] [PubMed] [Google Scholar]
  • 107.Wilkinson-Berka JL, Kelly DJ, Koerner SM, Jaworski K, Davis B, Thallas V, Cooper ME. ALT-946 and aminoguanidine, inhibitors of advanced glycation, improve severe nephropathy in the diabetic transgenic (mREN-2)27 rat. Diabetes. 2002;51:3283–3289. doi: 10.2337/diabetes.51.11.3283. [DOI] [PubMed] [Google Scholar]
  • 108.Forbes JM, Soulis T, Thallas V, Panagiotopoulos S, Long DM, Vasan S, Wagle D, Jerums G, Cooper M E. Renoprotective effects of a novel inhibitor of advanced glycation. Diabetologia. 2001;44:108–114. doi: 10.1007/s001250051587. [DOI] [PubMed] [Google Scholar]
  • 109.Kikuchi S, Shinpo K, Moriwaka F, Makita Z, Miyata T, Tashiro K. Neurotoxicity of methylglyoxal and 3-deoxyglucosone on cultured cortical neurons: synergism between glycation and oxidative stress, possibly involved in neurodegenerative diseases. J. Neurosci. Res. 1991;57:280–289. doi: 10.1002/(SICI)1097-4547(19990715)57:2<280::AID-JNR14>3.0.CO;2-U. [DOI] [PubMed] [Google Scholar]
  • 110.Dukic-Stefanovic S, Schinzel R, Riederer P, Munch G. AGES in brain ageing: AGE-inhibitors as neuroprotective and anti-dementia drugs? Biogerontology. 2001;2:19–34. doi: 10.1023/a:1010052800347. [DOI] [PubMed] [Google Scholar]
  • 111.Ihl R, Perisic I, Maurer K, Dierks T. Effect of 3 months treatment with tenilsetam in patients suffering from dementia of Alzheimer’s type (DAT) J. Neural. Trans. 1989;1:84–85. [Google Scholar]
  • 112.Ruggiero-Lopez D, Lecomte M, Moinet G, Patereau G, Lagarde M, Wiernsperger N. Reaction of metformin with dicarbonyl compounds. Possible implication in the inhibition of advanced glycation end product formation. Biochem. Pharmacol. 1999;58:1765–1773. doi: 10.1016/s0006-2952(99)00263-4. [DOI] [PubMed] [Google Scholar]
  • 113.Beisswenger P, Ruggiero-Lopez D. Metformin inhibition of glycation processes. Diabetes Metab. 2003;29:6S95–6S103. doi: 10.1016/s1262-3636(03)72793-1. [DOI] [PubMed] [Google Scholar]
  • 114.Beisswenger PJ, Howell SK, Touchette AD, Lal S, Szwergold S. Metformin reduces systemic methylglyoxal levels in type 2 diabetes. Diabetes. 1999;48:198–202. doi: 10.2337/diabetes.48.1.198. [DOI] [PubMed] [Google Scholar]
  • 115.Kiho T, Kato M, Usui S, Hirano K. Effect of buformin and metformin on formation of advanced glycation end products by methylglyoxal. Clin. Chim. Acta. 2005;358:139–145. doi: 10.1016/j.cccn.2005.02.012. [DOI] [PubMed] [Google Scholar]
  • 116.Bonnefont-Rousselot D. Antioxidant and anti-AGE therapeutics: evaluation and perspectives. J. Soc. Biol. 2001;195:391–398. doi: 10.1051/jbio/2001195040391. [DOI] [PubMed] [Google Scholar]
  • 117.Hipkiss AR. Carnosine, a protective, anti-ageing peptide? Int. J. Biochem. Cell Biol. 1998;30:863–868. doi: 10.1016/s1357-2725(98)00060-0. [DOI] [PubMed] [Google Scholar]
  • 118.Sobal G, Menzel EJ, Sinzinger H. Calcium antagonists as inhibitors of in vitro low density lipoprotein oxidation and glycation. Biochem. Pharmacol. 2001;61:373–379. doi: 10.1016/s0006-2952(00)00548-7. [DOI] [PubMed] [Google Scholar]
  • 119.Akira K, Amano M, Okajima F, Hashimoto T, Oikawa SS. Inhibitory effects of amlodipine and fluvastatin on the deposition of advanced glycation end products in aortic wall of cholesterol and fructosefed rabbits. Biol. Pharm. Bull. 2006;29:75–81. doi: 10.1248/bpb.29.75. [DOI] [PubMed] [Google Scholar]
  • 120.Verbeke P, Siboska GE, Clark BF, Rattan SI. Kinetin inhibits protein oxidation and glycoxidation in vitro. Biochem. Biophys. Res. Commun. 2000;276:1265–1270. doi: 10.1006/bbrc.2000.3616. [DOI] [PubMed] [Google Scholar]
  • 121.Jung YS, Joe BY, Cho SJ, Konishi Y. 2,3-Dimethoxy-5-methyl-1,4-benzoquinones and 2-methyl-1,4-naphthoquinones: glycation inhibitors with lipid peroxidation activity. Bioorg. Med. Chem. Lett. 2005;15:1125–1129. doi: 10.1016/j.bmcl.2004.12.029. [DOI] [PubMed] [Google Scholar]
  • 122.Culbertson SM, Enright GD, Ingold KU. Synthesis of a novel radical trapping and carbonyl group trapping anti-AGE agent: a pyridoxamine analogue for inhibiting advanced glycation (AGE) and lipoxidation (ALE) end products. Org. Lett. 2003;5:2659–2662. doi: 10.1021/ol0348147. [DOI] [PubMed] [Google Scholar]
  • 123.Meeprom A, Sompong W, Chan CB, Adisakwattana S. Isoferulic acid, a new anti-glycation agent, inhibits fructose- and glucose-mediated protein glycation in vitro. Molecules. 2013;18:6439–6454. doi: 10.3390/molecules18066439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 124.Freedman BI, Wuerth JP, Cartwright K, Bain RP, Dippe S, Hershon K, Mooradian AD, Spinowitz BS. Design and baseline characteristics for the aminoguanidine Clinical trial in overt type 2 diabetic nephropathy (ACTION II) Control. Clin. Trials. 1999;20:493–510. doi: 10.1016/s0197-2456(99)00024-0. [DOI] [PubMed] [Google Scholar]
  • 125.Thornalley PJ. Use of aminoguanidine (Pimagedine) to prevent the formation of advanced glycation end products. Arch. Biochem. Biophys. 2003;419:31–40. doi: 10.1016/j.abb.2003.08.013. [DOI] [PubMed] [Google Scholar]
  • 126.Williams ME. Clinical studies of advanced glycation end product inhibitors and diabetic kidney disease. Curr. Diab. Rep. 2004;4:441–446. doi: 10.1007/s11892-004-0054-0. [DOI] [PubMed] [Google Scholar]
  • 127.Hager K, Marahrens A, Kenklies M, Riederer P, Münch G. Alphalipoic acid as a new treatment option for Azheimer type dementia. Arch. Gerontol. Geriat. 2001;32:275–282. doi: 10.1016/s0167-4943(01)00104-2. [DOI] [PubMed] [Google Scholar]
  • 128.Zhao J, Zhong CJ. A review on research progress of transketolase. Neurosci. Bull. 2009;25:94–99. doi: 10.1007/s12264-009-1113-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 129.Shangari N, Bruce WR, Poon R, O’Brien PJ. Toxicity of glyoxalsrole of oxidative stress, metabolic detoxification and thiamine deficiency. Biochem. Soc. Trans. 2003;31:1390–393. doi: 10.1042/bst0311390. [DOI] [PubMed] [Google Scholar]
  • 130.Tarwadi KV, Agte VV. Effect of micronutrients on methylglyoxal mediated in vitro glycation of albumin. Biol. Trace. Elem. Res. 2011;143:717–725. doi: 10.1007/s12011-010-8915-7. [DOI] [PubMed] [Google Scholar]
  • 131.Breslow R. The mechanism of thiamine action: predictions from model experiments. Ann. N. Y. Acad. Sci. 1962;98:445–452. doi: 10.1111/j.1749-6632.1962.tb30565.x. [DOI] [PubMed] [Google Scholar]
  • 132.Pohl M, Sprenger GA, Muller M. A new perspective on thiamine catalysis. Curr. Opin. Biotechnol. 2004;15:335–342. doi: 10.1016/j.copbio.2004.06.002. [DOI] [PubMed] [Google Scholar]
  • 133.Voziyan PA, Hudson BG. Pyridoxamine as a multifunctional pharmaceutical: targeting pathogenic glycation and oxidative damage. Cell Mol. Life Sci. 2005;62:1671–1681. doi: 10.1007/s00018-005-5082-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 134.Chandler D, Woldu A, Rahmadi A, Shanmuga K, Steiner N, Wright E, Benavente-García O, Schulz O, Castillo J, Münch G. Effects of plant-derived polyphenols on TNF-alpha and nitric oxide production induced by advanced glycation end products. Mol. Nutr. Food Res. 2010;54:141–150. doi: 10.1002/mnfr.200900504. [DOI] [PubMed] [Google Scholar]
  • 135.Kim J, Lee HJ, Lee KW. Naturally occurring phytochemicals for the prevention of Alzheimer’s disease. J. Neurochem. 2010;112:1415–1430. doi: 10.1111/j.1471-4159.2009.06562.x. [DOI] [PubMed] [Google Scholar]
  • 136.Weinreb O, Amit T, Mandel S, Youdim MB. Neuroprotective molecular mechanisms of (−)-epigallocatechin-3-gallate, a reflective outcome of its antioxidant, iron chelating and neuritogenic properties. Genes Nutr. 2009;4:283–296. doi: 10.1007/s12263-009-0143-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 137.Dorsey PG, Greenspan P. Inhibition of nonenzymatic protein glycation by pomegranate and other fruit juices. J. Med. Food. 2014;17:447–454. doi: 10.1089/jmf.2013.0075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 138.Lv L, Shao X, Chen H, Ho CT, Sang S. Genistein inhibits advanced glycation end product formation by trapping methylglyoxal. Chem. Res. Toxicol. 2011;24:579–586. doi: 10.1021/tx100457h. [DOI] [PubMed] [Google Scholar]
  • 139.Perez Gutierrez RM. Inhibition of advanced glycation end product formation by Origanum majorana l. in vitro and in streptozotocin-induced diabetic rats. Evid. Based Complement Alternat. Med. 2012;598638:18. doi: 10.1155/2012/598638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 140.Aldini G, Vistoli G, Stefek M, Chondrogianni N, Grune T, Sereikaite J, Sadowska-Bartosz I, Bartosz G. Molecular strategies to prevent, inhibit, and degrade advanced glycoxidation and advanced lipoxidation end products. Free Radic. Res. 2013;1:93137. doi: 10.3109/10715762.2013.792926. [DOI] [PubMed] [Google Scholar]
  • 141.Deane R, Singh I, Sagare AP, Bell RD, Ross NT, LaRue B, Love R, Perry S, Paquette N, Deane RJ, Thiyagarajan M, Zarcone T, Fritz G, Friedman AE, Miller BL, Zlokovi BV. A multimodal RAGE specific inhibitor reducesamyloid β-mediated brain disorder in a mouse model of Alzheimer’s disease. J. Clin. Invest. 2012;122:1377–1392. doi: 10.1172/JCI58642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 142.Han YT, Choi GI, Son D, Kim NJ, Yun H, Lee S, Chang DJ, Hong HS, Kim H, Ha HJ, Kim YH, Park HJ, Lee J, Suh YG. Ligand-based design, synthesis, and biological evaluation of 2-aminopyrimidines, a novel series of receptor for advanced glycation end products (RAGE) inhibitors. J. Med. Chem. 2012;55:9120–9135. doi: 10.1021/jm300172z. [DOI] [PubMed] [Google Scholar]
  • 143.Gospodarska E, Kupniewska-Kozak A, Goch G, Dadlez M. Binding studies of truncated variants of the A β peptide to the V-domain of the RAGE receptor reveal A β residues responsible for binding. Biochim. Biophys. Acta. 2011;1814:592–609. doi: 10.1016/j.bbapap.2011.02.011. [DOI] [PubMed] [Google Scholar]
  • 144.Webster SJ, Mruthinti S, Hill WD, Buccafusco JJ, Terry AVJ. An aqueous orally active vaccine targeted againsta RAGE/AB complex as a novel therapeutic for Alzheimer’s disease. Neuromolecular Med. 2012;14:119–130. doi: 10.1007/s12017-012-8176-z. [DOI] [PubMed] [Google Scholar]
  • 145.Yu W, Wu J, Cai F, Xiang J, Zha W, Fan D, Guo S, Ming Z, Liu C. Curcumin alleviates diabetic cardiomyopathy in experimental diabeticrats. PLoS One. 2012;7:e52013. doi: 10.1371/journal.pone.0052013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 146.Yan FL, Zheng Y, Zhao FD. Effects of Ginkgo biloba extract EGb761 on expression of RAGE and LRP-1 in cerebral microvascular endothelial cells under chronic hypoxia and hypoglycemia. Acta Neuropathol. 2008;116:529–535. doi: 10.1007/s00401-008-0435-6. [DOI] [PubMed] [Google Scholar]
  • 147.Preston JE, Hipkiss AR, Himsworth DT, Romero IA, Abbott JN. Toxic effects of beta-amyloid (25–35) on immortalised rat brain endothelial cell: protection by carnosine, homocarnosine and beta-alanine. Neurosci. Lett. 1998;242:105–108. doi: 10.1016/s0304-3940(98)00058-5. [DOI] [PubMed] [Google Scholar]
  • 148.Delpierre G, Rider MH, Collard F, Stroobant V, Vanstapel F, Santos H, Van Schaftingen E. Identification, cloning, and heterologous expression of a mammalian fructosamine-3-kinase. Diabetes. 2000;49:1627–1634. doi: 10.2337/diabetes.49.10.1627. [DOI] [PubMed] [Google Scholar]
  • 149.Szwergold BS, Howell S, Beisswenger PJ. Human fructosamine-3-kinase. Purification, sequencing, substrate specificity, and evidence of activity in vivo. Diabetes. 2001;50:2139–2147. doi: 10.2337/diabetes.50.9.2139. [DOI] [PubMed] [Google Scholar]
  • 150.Delpierre G, Collard F, Fortpied J, van Schaftingen E. Fructosamine-3-kinase is involved in an intracellulardeglycation pathway in human erythrocytes. Biochem. J. 2002;365:801–808. doi: 10.1042/BJ20020325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 151.Delpierre G, Van Schaftingen E. Fructosamine 3-kinase, an enzyme involved in protein deglycation. Biochem. Soc. Trans. 2003;31:1354–1357. doi: 10.1042/bst0311354. [DOI] [PubMed] [Google Scholar]
  • 152.Delpierre G, Vertommen D, Communi D, Rider MH, Van Schaftingen E. Identification of fructosamine residues deglycated by fructosamine 3-kinase in human hemoglobin. J. Biol. Chem. 2004;279:27613–27620. doi: 10.1074/jbc.M402091200. [DOI] [PubMed] [Google Scholar]
  • 153.Veiga-da-Cunha M, Jacquemin P, Delpierre G, Godfraind C, Theate I, Vertommen D, Clotman F, Lemaigre F, Devuys O, Van Schaftingen E. Increased protein glycation in fructosamine 3-kinasedeficient mice. Biochem. J. 2006;399:257–264. doi: 10.1042/BJ20060684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 154.Sakiyama H, Takahashi M, Yamamoto T, Teshima T, Lee SH, Miyamoto Y, Misonou Y, Taniguchi N. The internalization and metabolism of 3-deoxyglucosone in human umbilical vein endothelial cells. J. Biochem. 2006;139:245–253. doi: 10.1093/jb/mvj017. [DOI] [PubMed] [Google Scholar]
  • 155.Mannervik B. Molecular enzymology of the glyoxalase system. Drug Metabol. Drug Interact. 2008;23:13–27. doi: 10.1515/dmdi.2008.23.1-2.13. [DOI] [PubMed] [Google Scholar]
  • 156.Kuhla B, Luth HJ, Haferburg D, Boeck K, Arendt T, Munch G. Methylglyoxal, glyoxal and their detoxification in Alzheimer’s disease. Ann. N. Y. Acad. Sci. 2005;1043:211–216. doi: 10.1196/annals.1333.026. [DOI] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES