Abstract
Membranes made from binary mixtures of egg sphingomyelin (ESM) and cholesterol were investigated using conventional and saturation-recovery EPR observations of the 5-doxylstearic acid spin label (5-SASL). The effects of cholesterol on membrane order and the oxygen transport parameter (bimolecular collision rate of molecular oxygen with the nitroxide spin label) were monitored at the depth of the fifth carbon in fluid- and gel-phase ESM membranes. The saturation-recovery EPR discrimination by oxygen transport (DOT) method allowed the discrimination of the liquid-ordered (l o), liquid-disordered (l d), and solid-ordered (s o) phases because the bimolecular collision rates of the molecular oxygen with the nitroxide spin label differ in these phases. Additionally, oxygen collision rates (the oxygen transport parameter) were obtained in coexisting phases without the need for their separation, which provides information about the internal dynamics of each phase. The addition of cholesterol causes a dramatic decrease in the oxygen transport parameter around the nitroxide moiety of 5-SASL in the l o phase, which at 50 mol% cholesterol becomes ∼5 times smaller than in the pure ESM membrane in the l d phase, and ∼2 times smaller than in the pure ESM membrane in the s o phase. The overall change in the oxygen transport parameter is as large as ∼20-fold. Conventional EPR spectra show that 5-SASL is maximally immobilized at the phase boundary between regions with coexisting l d and l o phases or s o and l o phases and the region with a single l o phase. The obtained results all owed for the construction of a phase diagram for the ESM-cholesterol membrane.
Key words: Liquid-ordered phase, Raft domain, Sphingomyelin, Cholesterol, Lipid bilayer, Spin labeling, EPR
Full Text
The Full Text of this article is available as a PDF (674.6 KB).
Abbreviations used
- BSM
bovine brain sphingomyelin
- DMPC
dimyristoylphosphatidylcholine
- DPPC
dipalmitoylphosphatidylcholine
- EPR
electron paramagnetic resonance
- ESM
egg sphingomyelin
- FOT
fast oxygen transport
- ld
liquid-disordered
- lo
liquid-ordered
- PC
phosphatidylcholine
- PSM
palmitoylsphingomyelin
- 5-SASL
5-doxylstearic acid spin label
- SLOT
slow oxygen transport
- so
solid-ordered
- T1
spin-lattice relaxation time
References
- 1.Simons K., Ikonen E. Functional rafts in cell membranes. Nature. 1997;387:569–572. doi: 10.1038/42408. [DOI] [PubMed] [Google Scholar]
- 2.Shaikh S.R., Edidin M.A. Membranes are not just rafts. Chem. Phys. Lipids. 2006;144:1–3. doi: 10.1016/j.chemphyslip.2006.06.017. [DOI] [PubMed] [Google Scholar]
- 3.Kusumi A., Koyama-Honda I., Suzuki K. Molecular dynamics and interactions for creation of stimulation-induced stabilized rafts from small unstable steady-state rafts. Traffic. 2004;5:213–230. doi: 10.1111/j.1600-0854.2004.0178.x. [DOI] [PubMed] [Google Scholar]
- 4.Mayor S., Rao M. Rafts, scale dependent, active lipid organization at the cell surface. Traffic. 2004;5:231–240. doi: 10.1111/j.1600-0854.2004.00172.x. [DOI] [PubMed] [Google Scholar]
- 5.Edidin M. The state of lipid rafts from model membranes to cells. Annu. Rev. Biophys. Biomol. Struct. 2003;32:257–283. doi: 10.1146/annurev.biophys.32.110601.142439. [DOI] [PubMed] [Google Scholar]
- 6.Munro S. Lipid rafts: delusive or illusive. Cell. 2003;115:377–388. doi: 10.1016/S0092-8674(03)00882-1. [DOI] [PubMed] [Google Scholar]
- 7.Brown D.A., London E. Structure and function of sphingolipid-and cholesterol-rich membrane rafts. J. Biol. Chem. 2000;275:17221–17224. doi: 10.1074/jbc.R000005200. [DOI] [PubMed] [Google Scholar]
- 8.Brown D.A., Rose J.K. Sorting of GPI-anchored proteins to glycolipidenriched membrane subdomains during transport to the apical cell surface. Cell. 1992;68:533–544. doi: 10.1016/0092-8674(92)90189-J. [DOI] [PubMed] [Google Scholar]
- 9.Ridgway N.D. Interaction between metabolism and intracellular distribution of cholesterol and sphingomyelin. Biochim. Biophys. Acta. 2000;1484:129–141. doi: 10.1016/s1388-1981(00)00006-8. [DOI] [PubMed] [Google Scholar]
- 10.Pralle A., Keller P., Florin E.L., Simons K., Horber J.K.H. Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J. Cell Biol. 2000;148:997–1008. doi: 10.1083/jcb.148.5.997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Friedrichson T., Kurzchalia T.V. Microdomains of GPI-anchored proteins in living cells revealed by crosslinking. Nature. 1998;394:802–805. doi: 10.1038/29570. [DOI] [PubMed] [Google Scholar]
- 12.Heerklotz H. Triton promotes domain formation in lipid raft mixtures. Biophys. J. 2002;83:2693–2701. doi: 10.1016/S0006-3495(02)75278-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Pike L.J. Rafts defined: a report on the Keystone symposium on lipid rafts and cell function. J. Lipid Res. 2006;47:1597–1598. doi: 10.1194/jlr.E600002-JLR200. [DOI] [PubMed] [Google Scholar]
- 14.Kawasaki K., Yin J.-J., Subczynski W.K., Hyde J.S., Kusumi A. Pulse EPR detection of lipid exchange between protein-rich raft and bulk domains in the membrane: Methodology development and its application to studies of influenza viral membrane. Biophys. J. 2001;80:738–748. doi: 10.1016/S0006-3495(01)76053-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Suzuki K.G.N., Fujiwara T.K., Sanematsu F., Iino R., Edidin M., Kusumi A. GPI-anchored receptor clusters transiently recruit Lyn and Ga for temporary cluster immobilization and Lyn activation: single-molecule tracking study 1. J. Cell Biol. 2007;177:717–730. doi: 10.1083/jcb.200609174. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Suzuki K.G.N., Fujiwara T.K., Edidin M., Kusumi A. Dynamic recruitment of phospholipase Cγ at transiently immobilized GPI-anchored receptor clusters induces IP3−Ca+2 signaling: single-molecule tracking study 2. J. Cell Biol. 2007;177:731–742. doi: 10.1083/jcb.200609175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Kusumi A., Subczynski W.K., Pasenkiewicz-Gierula M., Hyde J.S., Merkle H. Spin-label studies on phosphatidylcholine-cholesterol membranes: effects of alkyl chain length and unsaturation in the fluid phase. Biochim. Biophys. Acta. 1986;854:307–317. doi: 10.1016/0005-2736(86)90124-0. [DOI] [PubMed] [Google Scholar]
- 18.Recktenwald D.J., McConnell H.M. Phase equilibria in binary mixture of phosphatidylcholine and cholesterol. Biochemistry. 1981;20:4505–4510. doi: 10.1021/bi00518a042. [DOI] [PubMed] [Google Scholar]
- 19.Shimshick E.J., McConnell H.M. Lateral phase separation in phospholipid membranes. Biochemistry. 1973;12:2351–2360. doi: 10.1021/bi00736a026. [DOI] [PubMed] [Google Scholar]
- 20.Subczynski W.K., Widomska J., Wisniewska A., Kusumi A. Saturation recovery EPR discrimination by oxygen transport (DOT) method for characterizing membrane domains. In: McIntosh T.J., editor. Methods in Molecular Biology. Vol. 398. Lipid Rafts. Totowa, New York: Humana Press Inc.; 2007. pp. 145–160. [DOI] [PubMed] [Google Scholar]
- 21.Ashikawa I., Yin J.-J., Subczynski W.K., Kouyama T., Hyde J.S., Kusumi A. Molecular organization and dynamics in bacteriorhodopsin-rich reconstituted membranes: Discrimination of lipid environments by the oxygen transport parameter using a pulse ESR spin-labeling technique. Biochemistry. 1994;33:4947–4952. doi: 10.1021/bi00182a025. [DOI] [PubMed] [Google Scholar]
- 22.Subczynski W.K., Wisniewska A., Hyde J.S., Kusumi A. Three-dimensional dynamic structure of the liquid-ordered domain as examined by a pulse-EPR oxygen probing. Biophys. J. 2007;92:1573–1584. doi: 10.1529/biophysj.106.097568. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Subczynski W.K., Pasenkiewicz-Gierula M., McElhaney R.N., Hyde J.S., Kusumi A. Molecular dynamics of 1-palmitoyl-2-oleoylphosphatidylcholine membranes containing transmembrane α-helical peptides with alternating leucine and alanine residues. Biochemistry. 2003;42:3939–3948. doi: 10.1021/bi020636y. [DOI] [PubMed] [Google Scholar]
- 24.Subczynski W.K., Lewis R.N.A.H., McElhaney R.N., Hodges R.S., Hyde J.S., Kusumi A. Molecular organization and dynamics of 1-palmitoyl-2-oleoylphosphatidylcholine bilayers containing a transmembrane α-helical peptide. Biochemistry. 1998;37:3156–3164. doi: 10.1021/bi972148+. [DOI] [PubMed] [Google Scholar]
- 25.Subczynski W.K., Hopwood L.E., Hyde J.S. Is the mammalian cell plasma membrane a barrier to oxygen transport? J. Gen. Physiol. 1992;100:69–87. doi: 10.1085/jgp.100.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Subczynski W.K., Hyde J.S., Kusumi A. Effect of alkyl chain unsaturation and cholesterol intercalation on oxygen transport in membranes: a pulse ESR spin labeling study. Biochemistry. 1991;30:8578–8590. doi: 10.1021/bi00099a013. [DOI] [PubMed] [Google Scholar]
- 27.Subczynski W.K., Hyde J.S., Kusumi A. Oxygen permeability of phosphatidylcholine-cholesterol membranes. Proc. Natl. Acad. Sci. USA. 1989;86:4474–4478. doi: 10.1073/pnas.86.12.4474. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Kusumi A., Subczynski W.K., Hyde J.S. Oxygen transport parameter in membranes as deduced by saturation recovery measurements of spinlattice relaxation times of spin labels. Proc. Natl. Acad. Sci. USA. 1982;79:1854–1858. doi: 10.1073/pnas.79.6.1854. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Ge M., Field K.A., Aneja R., Holovka D., Baird B., Freed J.H. Electron spin resonance characterization of liquid ordered phase of detergent-resistant membranes from RBL-2H3 cells. Biophys. J. 1999;77:925–933. doi: 10.1016/S0006-3495(99)76943-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.London E. Insights into lipid raft structure and formation from experiments in model systems. Curr. Opin. Struct. Biol. 2002;12:480–486. doi: 10.1016/S0959-440X(02)00351-2. [DOI] [PubMed] [Google Scholar]
- 31.Almeida P.F.F., Vaz W.L.C., Thompson T.E. Lateral diffusion in the liquid phases of dimyristoylphosphatidylcholine/cholesterol bilayers: a free volume analysis. Biochemistry. 1992;31:6739–6747. doi: 10.1021/bi00144a013. [DOI] [PubMed] [Google Scholar]
- 32.Costa-Filho A.J., Shimoyama Y., Freed J.H. A2D-ELDOR study of the liquid ordered phase in multilamellar vesicle membranes. Biophys. J. 2003;84:2619–2633. doi: 10.1016/S0006-3495(03)75067-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Ge M., Gidvani A., Brown H.A., Holovka D., Baird B., Freed J.H. Ordered and disordered phases coexist in plasma membrane vesicles of RBL-2H3 mast cells. Biophys. J. 2003;85:1278–1288. doi: 10.1016/S0006-3495(03)74563-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Veiga M.P., Arrondo J.L.R., Goni F.M., Alonso A., Marsh D. Interaction of cholesterol with sphingomyelin in mixed membranes containing phosphatidylcholine, studied by spin-label ESR and IR spectroscopies. A possible stabilization of gel-phase sphingolipid domains by cholesterol. Biochemistry. 2001;40:2614–1622. doi: 10.1021/bi0019803. [DOI] [PubMed] [Google Scholar]
- 35.Wolf C., Chachaty C. Compared effects of cholesterol and 7-dehydrocholesterol on sphingomyelin-glycerophospholipid bilayers studied by ESR. Biophys. Chem. 2000;84:269–279. doi: 10.1016/S0301-4622(00)00135-6. [DOI] [PubMed] [Google Scholar]
- 36.Gaffney B.J., Marsh D. High-frequency, spin-label EPR of nonaxial lipid ordering and motion in cholesterol-containing membranes. Proc. Natl. Acad. Sci. USA. 1998;95:12490–12493. doi: 10.1073/pnas.95.22.12940. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Almeida P.F.F., Pokorny A., Hinderliter A. Thermodynamics of membrane domains. Biochim. Biophys. Acta. 2005;1720:1–13. doi: 10.1016/j.bbamem.2005.12.004. [DOI] [PubMed] [Google Scholar]
- 38.Sankaram M.B., Thompson T.E. Interaction of cholesterol with various glycerophospholipids and sphingomyelin. Biochemistry. 1990;29:10670–10675. doi: 10.1021/bi00499a014. [DOI] [PubMed] [Google Scholar]
- 39.de Almeida R.F.M., Fedorov A., Prieto M. Sphingomyelin/phosphatidylcholine/cholesterol phase diagram: boundaries and composition of lipid rafts. Biophys. J. 2003;85:2406–2416. doi: 10.1016/s0006-3495(03)74664-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Kusumi A., Subczynski W.K., Hyde J.S. Effects of pH on ESR spectra of stearic acid spin labels in membranes: probing the membrane surface. Fed. Proc. 1982;41:1394. [Google Scholar]
- 41.Papahadjopoulos D. Surface properties of acidic phospholipids: Interaction of monolayers and hydrated liquid crystals with uni-and bi-valent metal ions. Biochim. Biophys. Acta. 1968;163:240–254. doi: 10.1016/0005-2736(68)90103-X. [DOI] [PubMed] [Google Scholar]
- 42.Hyde J.S., Subczynski W.K. Spin-label oximetry. In: Berliner L.J., Reuben J., editors. Biological Magnetic Resonance. Vol. 8. Spin labeling: theory and applications. New York: Plenum; 1989. pp. 399–425. [Google Scholar]
- 43.Subczynski W.K., Felix C.C., Klug C.S., Hyde J.S. Concentration by centrifugation for gas exchange EPR oximetry measurements with loop-gap resonators. J. Magn. Reson. 2005;176:244–248. doi: 10.1016/j.jmr.2005.06.011. [DOI] [PubMed] [Google Scholar]
- 44.Yin J.J., Subczynski W.K. Effect of lutein and cholesterol on alkyl chain bending in lipid bilayers: a pulse electron paramagnetic resonance spin labeling study. Biophys. J. 1996;71:832–839. doi: 10.1016/S0006-3495(96)79284-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Yin J.J., Pasenkiewicz-Gierula M., Hyde J.S. Lateral diffusion of lipids in membranes by pulse saturation recovery electron spin resonance. Proc. Natl. Acad. Sci. USA. 1987;84:964–968. doi: 10.1073/pnas.84.4.964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Windrem D.A., Plachy W.Z. The diffusion-solubility of oxygen in lipid bilayers. Biochim. Biophys. Acta. 1980;600:655–665. doi: 10.1016/0005-2736(80)90469-1. [DOI] [PubMed] [Google Scholar]
- 47.Robinson B.H., Hass D.A., Mailer C. Molecular dynamics in liquid: spin lattice relaxation of nitroxide spin labels. Science. 1994;263:490–493. doi: 10.1126/science.8290958. [DOI] [PubMed] [Google Scholar]
- 48.Loura L.M.S., Fedorov A., Prieto M. Fluid-fluid membrane microheterogenity: a fluorescence resonance energy transfer study. Biophys. J. 2001;80:778–788. doi: 10.1016/S0006-3495(01)76057-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.Subczynski W.K., Kusumi A. Effects of very small amounts of cholesterol on gel-phase phosphatidylcholine membranes. Biochim. Biophys. Acta. 1986;854:318–320. doi: 10.1016/0005-2736(86)90125-2. [DOI] [PubMed] [Google Scholar]
- 50.Widomska J., Raguz M., Dillon J., Gaillard E.R., Subczynski W.K. Physical properties of the lipid bilayer membrane made of calf lens lipids: EPR spin labeling studies. Biochim. Biophys. Acta. 2007;1768:1454–1465. doi: 10.1016/j.bbamem.2007.03.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51.Widomska J., Raguz M., Subczynski W.K. Oxygen permeability of the lipid bilayer membrane made of calf lens lipids. Biochim. Biophys. Acta. 2007;1768:2635–2645. doi: 10.1016/j.bbamem.2007.06.018. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.Collado M.I., Goni F.M., Alonso A., Marsh D. Domain formation in sphingomyelin/cholesterol mixed membranes studied by spin-label electron spin resonance spectroscopy. Biochemistry. 2005;44:4911–4918. doi: 10.1021/bi0474970. [DOI] [PubMed] [Google Scholar]
- 53.Hubbell W.L., McConnell H.M. Molecular motion in spin-labeled phospholipids and membranes. J. Am. Chem. Soc. 1971;93:314–326. doi: 10.1021/ja00731a005. [DOI] [PubMed] [Google Scholar]
- 54.Gaffney B.J. Principal considerations for the calculation of order parameters for fatty acid or phospholipid spin labels in membranes. In: Berliner L.J., editor. Spin labeling: theory and applications. New York: Academic Press; 1976. pp. 567–571. [Google Scholar]
- 55.Koynova R., Caffrey M. Phases and phase transitions of the sphingolipids. Biochim. Biophys. Acta. 1995;1255:213–236. doi: 10.1016/0005-2760(94)00202-a. [DOI] [PubMed] [Google Scholar]
- 56.Ramstedt B., Slotte J.P. Sphingolipids and the formation of sterolenriched ordered membrane domains. Biochim. Biophys. Acta. 2006;1758:1945–1956. doi: 10.1016/j.bbamem.2006.05.020. [DOI] [PubMed] [Google Scholar]
- 57.Guo W., Kurze V., Huber T., Afdhal N.H., Beyer K., Hamilton J.A. A solid-state NMR study of phospholipid-cholesterol interactions: sphingomyelin-cholesterol binary systems. Biophys. J. 2002;83:1465–1478. doi: 10.1016/S0006-3495(02)73917-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 58.Ohvo H., Slotte J.P. Cyclodextrin-mediated removal of sterols from monolayers: effects of sterol structure and phospholipids on desorption rate. Biochemistry. 1996;35:8018–8024. doi: 10.1021/bi9528816. [DOI] [PubMed] [Google Scholar]
- 59.Slotte J.P. Enzyme-catalyzed oxidation of cholesterol in mixed phospholipid monolayers reveals stoichiometry at which free cholesterol clusters disappear. Biochemistry. 1992;31:5472–5477. doi: 10.1021/bi00139a008. [DOI] [PubMed] [Google Scholar]