Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2012 Jun 5;17(3):433–445. doi: 10.2478/s11658-012-0022-7

De novo synthesis of protein phosphatase 1A, magnesium dependent, alpha isoform (PPM1A) during oocyte maturation

Dana Chuderland 1, Zeev Dvashi 2, Ruth Kaplan-Kraicer 1, Daniella Ben-Meir 2, Ruth Shalgi 1,, Sara Lavi 2
PMCID: PMC6275799  PMID: 22669481

Abstract

Oocyte maturation in mammals is a multiple-stage process that generates fertilizable oocytes. Ovarian oocytes are arrested at prophase of the first meiotic division characterized by the presence of a germinal vesicle. Towards ovulation, the oocytes resume meiosis and proceed to the second metaphase in a process known as maturation; they undergo nuclear and cytoplasmic changes that are accompanied by translation and degradation of mRNA. Protein phosphatase 1A, magnesium dependent, alpha isoform (PPM1A), which belongs to the metal-dependent serine/threonine protein phosphatase family, is highly conserved during evolution. PPM1A plays a significant role in many cellular functions such as cell cycle progression, apoptosis and cellular differentiation. It works through diverse signaling pathways, including p38 MAP kinase JNK and transforming growth factor beta (TGF-β). Herein we report that PPM1A is expressed in mouse oocytes and that its mRNA level rises during oocyte maturation. Using quantitative real-time polymerase chain reaction (qPCR) and western blot analysis, we found that PPM1A mRNA is synthesized at the beginning of the maturation process and remains elevated in the mature oocytes, promoting the accumulation of PPM1A protein. Since PPM1A function is mainly affected by its level, we propose that it might have an important role in oocyte maturation.

Key words: GV, MII, Transcription, Signal transduction, Phosphatase, P38-MAPK, Oocyte, Ovary, PPM1A, Maturation

Full Text

The Full Text of this article is available as a PDF (349.8 KB).

Abbreviations used

GV

germinal vesicle

GVBD

GV breakdown

hCG

human chorionic gonadotropin

IVM

in vitro maturation

LH

luteinizing hormone

MII

second meiotic division

MAPK

mitogen-activated protein kinase

MPF

maturation promoting factor

Phos-p38

phospho-p38-MAPK

PP1

protein phosphatase 1

PPM1A

protein phosphates 1A, magnesium dependent, alpha isoform

RPL34

ribosomal protein L34

Footnotes

Both authors contributed equally to the work

References

  • 1.Mehlmann L.M. Stops and starts in mammalian oocytes: recent advances in understanding the regulation of meiotic arrest and oocyte maturation. Reproduction. 2005;130:791–799. doi: 10.1530/rep.1.00793. [DOI] [PubMed] [Google Scholar]
  • 2.Skinner M.K. Regulation of primordial follicle assembly and development. Hum. Reprod. Update. 2005;11:461–471. doi: 10.1093/humupd/dmi020. [DOI] [PubMed] [Google Scholar]
  • 3.Fan H.Y., Sun Q.Y. Involvement of mitogen-activated protein kinase cascade during oocyte maturation and fertilization in mammals. Biol. Reprod. 2004;70:535–547. doi: 10.1095/biolreprod.103.022830. [DOI] [PubMed] [Google Scholar]
  • 4.Cui X.S., Li X.Y., Yin X.J., Kong I.K., Kang J.J., Kim N.H. Maternal gene transcription in mouse oocytes: genes implicated in oocyte maturation and fertilization. J. Reprod. Dev. 2007;53:405–418. doi: 10.1262/jrd.18113. [DOI] [PubMed] [Google Scholar]
  • 5.Wang S., Kou Z., Jing Z., Zhang Y., Guo X., Dong M., Wilmut I., Gao S. Proteome of mouse oocytes at different developmental stages. Proc. Natl. Acad. Sci USA. 2010;107:17639–17644. doi: 10.1073/pnas.1013185107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Han S.J., Conti M. New pathways from PKA to the Cdc2/cyclin B complex in oocytes: Wee1B as a potential PKA substrate. Cell Cycle. 2006;5:227–231. doi: 10.4161/cc.5.3.2395. [DOI] [PubMed] [Google Scholar]
  • 7.Solc P., Saskova A., Baran V., Kubelka M., Schultz R.M., Motlik J. CDC25A phosphatase controls meiosis I progression in mouse oocytes. Dev. Biol. 2008;317:260–269. doi: 10.1016/j.ydbio.2008.02.028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Solc P., Schultz R.M., Motlik J. Prophase I arrest and progression to metaphase I in mouse oocytes: comparison of resumption of meiosis and recovery from G2-arrest in somatic cells. Mol. Hum. Reprod. 2010;16:654–664. doi: 10.1093/molehr/gaq034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Lu Q., Dunn R.L., Angeles R., Smith G.D. Regulation of spindle formation by active mitogen-activated protein kinase and protein phosphatase 2A during mouse oocyte meiosis. Biol. Reprod. 2002;66:29–37. doi: 10.1095/biolreprod66.1.29. [DOI] [PubMed] [Google Scholar]
  • 10.Reddy P., Liu L., Adhikari D., Jagarlamudi K., Rajareddy S., Shen Y., Du C., Tang W., Hamalainen T., Peng S.L., Lan Z.J., Cooney A.J., Huhtaniemi I., Liu K. Oocyte-specific deletion of Pten causes premature activation of the primordial follicle pool. Science. 2008;319:611–613. doi: 10.1126/science.1152257. [DOI] [PubMed] [Google Scholar]
  • 11.Yoshizaki T., Maegawa H., Egawa K., Ugi S., Nishio Y., Imamura T., Kobayashi T., Tamura S., Olefsky J.M., Kashiwagi A. Protein phosphatase-2C alpha as a positive regulator of insulin sensitivity through direct activation of phosphatidylinositol 3-kinase in 3T3-L1 adipocytes. J. Biol. Chem. 2004;279:22715–22726. doi: 10.1074/jbc.M313745200. [DOI] [PubMed] [Google Scholar]
  • 12.Cohen P. The structure and regulation of protein phosphatases. Adv. Second Messenger Phosphoprotein Res. 1990;24:230–235. [PubMed] [Google Scholar]
  • 13.Lammers T., Lavi S. Role of type 2C protein phosphatases in growth regulation and in cellular stress signaling. Crit. Rev. Biochem. Mol. Biol. 2007;42:437–461. doi: 10.1080/10409230701693342. [DOI] [PubMed] [Google Scholar]
  • 14.Lin X., Duan X., Liang Y.Y., Su Y., Wrighton K.H., Long J., Hu M., Davis C.M., Wang J., Brunicardi F.C., Shi Y., Chen Y.G., Meng A., Feng X.H. PPM1A functions as a Smad phosphatase to terminate TGFbeta signaling. Cell. 2006;125:915–928. doi: 10.1016/j.cell.2006.03.044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Kobayashi T., Kanno S., Terasawa T., Murakami T., Ohnishi M., Ohtsuki K., Hiraga A., Tamura S. Phosphorylation of Mg(2+)-dependent protein phosphatase alpha (type 2C alpha) by casein kinase II. Biochem. Biophys. Res. Commun. 1993;195:484–489. doi: 10.1006/bbrc.1993.2069. [DOI] [PubMed] [Google Scholar]
  • 16.Zeng F., Baldwin D.A., Schultz R.M. Transcript profiling during preimplantation mouse development. Dev. Biol. 2004;272:483–496. doi: 10.1016/j.ydbio.2004.05.018. [DOI] [PubMed] [Google Scholar]
  • 17.Gilchrist R.B., Lane M., Thompson J.G. Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Hum. Reprod. Update. 2008;14:159–177. doi: 10.1093/humupd/dmm040. [DOI] [PubMed] [Google Scholar]
  • 18.Russell D.L., Robker R.L. Molecular mechanisms of ovulation: coordination through the cumulus complex. Hum. Reprod. Update. 2007;13:289–312. doi: 10.1093/humupd/dml062. [DOI] [PubMed] [Google Scholar]
  • 19.Ge L., Han D., Lan G.C., Zhou P., Liu Y., Zhang X., Sui H.S., Tan J.H. Factors affecting the in vitro action of cumulus cells on the maturing mouse oocytes. Mol. Reprod. Dev. 2008;75:136–142. doi: 10.1002/mrd.20753. [DOI] [PubMed] [Google Scholar]
  • 20.Fan H.Y., Liu Z., Shimada M., Sterneck E., Johnson P.F., Hedrick S.M., Richards J.S. MAPK3/1 (ERK1/2) in ovarian granulosa cells are essential for female fertility. Science. 2009;324:938–941. doi: 10.1126/science.1171396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Petrova I., Sedmikova M., Petr J., Vodkova Z., Pytloun P., Chmelikova E., Rehak D., Ctrnacta A., Rajmon R., Jilek F. The roles of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK) in aged pig oocytes. J. Reprod. Dev. 2009;55:75–82. doi: 10.1262/jrd.20061. [DOI] [PubMed] [Google Scholar]
  • 22.Perdiguero E., Pillaire M.J., Bodart J.F., Hennersdorf F., Frodin M., Duesbery N.S., Alonso G., Nebreda A.R. Xp38gamma/SAPK3 promotes meiotic G(2)/M transition in Xenopus oocytes and activates Cdc25C. EMBO J. 2003;22:5746–5756. doi: 10.1093/emboj/cdg559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Wang L., Wang X., Chen J., Yang Z., Yu L., Hu L., Shen X. Activation of protein serine/threonine phosphatase PP2Calpha efficiently prevents liver fibrosis. PLoS One. 2010;5:e14230. doi: 10.1371/journal.pone.0014230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Hamatani T., Carter M.G., Sharov A.A., Ko M.S. Dynamics of global gene expression changes during mouse preimplantation development. Dev. Cell. 2004;6:117–131. doi: 10.1016/s1534-5807(03)00373-3. [DOI] [PubMed] [Google Scholar]
  • 25.Wang Q.T., Piotrowska K., Ciemerych M.A., Milenkovic L., Scott M.P., Davis R.W., Zernicka-Goetz M. A genome-wide study of gene activity reveals developmental signaling pathways in the preimplantation mouse embryo. Dev. Cell. 2004;6:133–144. doi: 10.1016/s1534-5807(03)00404-0. [DOI] [PubMed] [Google Scholar]
  • 26.Samarakoon R., Chitnis S.S., Higgins S.P., Higgins C.E., Krepinsky J.C., Higgins P.J. Redox-induced Src kinase and caveolin-1 signaling in TGF-beta1-initiated SMAD2/3 activation and PAI-1 expression. PLoS One. 2011;6:e22896. doi: 10.1371/journal.pone.0022896. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Bu S., Kapanadze B., Hsu T., Trojanowska M. Opposite effects of dihydrosphingosine 1-phosphate and sphingosine 1-phosphate on transforming growth factor-beta/Smad signaling are mediated through the PTEN/PPM1A-dependent pathway. J. Biol. Chem. 2008;283:19593–19602. doi: 10.1074/jbc.M802417200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Shoat M., Ben-Meir D., Lavi S. Protein phosphatase magenesium dependent 1A (PPM1A) plays a role in the differenriation and survival of nerve cells. PLoS One. 2012;7:e32438. doi: 10.1371/journal.pone.0032438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Wu S.K., Wang B.J., Yang Y., Feng X.H., Zhao X.P., Yang D.L. Expression of PTEN, PPM1A and P-Smad2 in hepatocellular carcinomas and adjacent liver tissues. World J. Gastroenterol. 2007;13:4554–4559. doi: 10.3748/wjg.v13.i34.4554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Sasaki M., Ohnishi M., Tashiro F., Niwa H., Suzuki A., Miyazaki J., Kobayashi T., Tamura S. Disruption of the mouse protein Ser/Thr phosphatase 2Cbeta gene leads to early pre-implantation lethality. Mech. Dev. 2007;124:489–499. doi: 10.1016/j.mod.2007.04.001. [DOI] [PubMed] [Google Scholar]
  • 31.Stitzel M.L., Seydoux G. Regulation of the oocyte-to-zygote transition. Science. 2007;316:407–408. doi: 10.1126/science.1138236. [DOI] [PubMed] [Google Scholar]
  • 32.Shaulian E., Karin M. AP-1 as a regulator of cell life and death. Nat. Cell Biol. 2002;4:E131–136. doi: 10.1038/ncb0502-e131. [DOI] [PubMed] [Google Scholar]
  • 33.Knight P.G., Glister C. TGF-beta superfamily members and ovarian follicle development. Reproduction. 2006;132:191–206. doi: 10.1530/rep.1.01074. [DOI] [PubMed] [Google Scholar]
  • 34.Cuadrado A., Nebreda A.R. Mechanisms and functions of p38 MAPK signalling. Biochem. J. 2010;429:403–417. doi: 10.1042/BJ20100323. [DOI] [PubMed] [Google Scholar]
  • 35.Komatsu J., Yamano S., Kuwahara A., Tokumura A., Irahara M. The signaling pathways linking to lysophosphatidic acid-promoted meiotic maturation in mice. Life Sci. 2006;79:506–511. doi: 10.1016/j.lfs.2006.01.028. [DOI] [PubMed] [Google Scholar]
  • 36.Ben-Yosef D., Talmor A., Shwartz L., Granot Y., Shalgi R. Tyrosylphosphorylated proteins are involved in regulation of meiosis in the rat egg. Mol. Reprod. Dev. 1998;49:176–185. doi: 10.1002/(SICI)1098-2795(199802)49:2<176::AID-MRD8>3.0.CO;2-M. [DOI] [PubMed] [Google Scholar]
  • 37.Barretto L.S., Caiado Castro V.S., Garcia J.M., Mingoti G.Z. Role of roscovitine and IBMX on kinetics of nuclear and cytoplasmic maturation of bovine oocytes in vitro. Anim. Reprod. Sci. 2007;99:202–207. doi: 10.1016/j.anireprosci.2006.06.001. [DOI] [PubMed] [Google Scholar]
  • 38.Levi, M., Maro, B. and Shalgi, R. The involvement of Fyn kinase in resumption of the first meiotic division in mouse oocytes. Cell Cycle9 (2010) [DOI] [PubMed]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES